Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon3b Structured version   Visualization version   GIF version

Theorem opltcon3b 39376
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 31504 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b 𝐵 = (Base‘𝐾)
opltcon3.s < = (lt‘𝐾)
opltcon3.o = (oc‘𝐾)
Assertion
Ref Expression
opltcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ( 𝑌) < ( 𝑋)))

Proof of Theorem opltcon3b
StepHypRef Expression
1 opltcon3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2733 . . . 4 (le‘𝐾) = (le‘𝐾)
3 opltcon3.o . . . 4 = (oc‘𝐾)
41, 2, 3oplecon3b 39372 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( 𝑋)))
51, 2, 3oplecon3b 39372 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( 𝑌)))
653com23 1126 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( 𝑌)))
76notbid 318 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( 𝑋)(le‘𝐾)( 𝑌)))
84, 7anbi12d 632 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
9 opposet 39353 . . 3 (𝐾 ∈ OP → 𝐾 ∈ Poset)
10 opltcon3.s . . . 4 < = (lt‘𝐾)
111, 2, 10pltval3 18251 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋)))
129, 11syl3an1 1163 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋)))
1393ad2ant1 1133 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
141, 3opoccl 39366 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
15143adant2 1131 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
161, 3opoccl 39366 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
17163adant3 1132 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
181, 2, 10pltval3 18251 . . 3 ((𝐾 ∈ Poset ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌) < ( 𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
1913, 15, 17, 18syl3anc 1373 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) < ( 𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
208, 12, 193bitr4d 311 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ( 𝑌) < ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  Basecbs 17127  lecple 17175  occoc 17176  Posetcpo 18221  ltcplt 18222  OPcops 39344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-proset 18208  df-poset 18227  df-plt 18242  df-oposet 39348
This theorem is referenced by:  opltcon1b  39377  opltcon2b  39378  cvrcon3b  39449  1cvratex  39645  lhprelat3N  40212
  Copyright terms: Public domain W3C validator