Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opltcon3b | Structured version Visualization version GIF version |
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 29399 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
opltcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opltcon3.s | ⊢ < = (lt‘𝐾) |
opltcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opltcon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opltcon3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2758 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opltcon3.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | oplecon3b 36811 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋))) |
5 | 1, 2, 3 | oplecon3b 36811 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
6 | 5 | 3com23 1123 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
7 | 6 | notbid 321 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
8 | 4, 7 | anbi12d 633 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
9 | opposet 36792 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
10 | opltcon3.s | . . . 4 ⊢ < = (lt‘𝐾) | |
11 | 1, 2, 10 | pltval3 17657 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
12 | 9, 11 | syl3an1 1160 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
13 | 9 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
14 | 1, 3 | opoccl 36805 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
15 | 14 | 3adant2 1128 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
16 | 1, 3 | opoccl 36805 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
17 | 16 | 3adant3 1129 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
18 | 1, 2, 10 | pltval3 17657 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
19 | 13, 15, 17, 18 | syl3anc 1368 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
20 | 8, 12, 19 | 3bitr4d 314 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5036 ‘cfv 6340 Basecbs 16555 lecple 16644 occoc 16645 Posetcpo 17630 ltcplt 17631 OPcops 36783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-ov 7159 df-proset 17618 df-poset 17636 df-plt 17648 df-oposet 36787 |
This theorem is referenced by: opltcon1b 36816 opltcon2b 36817 cvrcon3b 36888 1cvratex 37084 lhprelat3N 37651 |
Copyright terms: Public domain | W3C validator |