![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opltcon3b | Structured version Visualization version GIF version |
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 28696 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
opltcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opltcon3.s | ⊢ < = (lt‘𝐾) |
opltcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opltcon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opltcon3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2770 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opltcon3.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | oplecon3b 35002 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋))) |
5 | 1, 2, 3 | oplecon3b 35002 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
6 | 5 | 3com23 1119 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
7 | 6 | notbid 307 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
8 | 4, 7 | anbi12d 608 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
9 | opposet 34983 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
10 | opltcon3.s | . . . 4 ⊢ < = (lt‘𝐾) | |
11 | 1, 2, 10 | pltval3 17174 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
12 | 9, 11 | syl3an1 1165 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
13 | 9 | 3ad2ant1 1126 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
14 | 1, 3 | opoccl 34996 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
15 | 14 | 3adant2 1124 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
16 | 1, 3 | opoccl 34996 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
17 | 16 | 3adant3 1125 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
18 | 1, 2, 10 | pltval3 17174 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
19 | 13, 15, 17, 18 | syl3anc 1475 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
20 | 8, 12, 19 | 3bitr4d 300 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 ‘cfv 6031 Basecbs 16063 lecple 16155 occoc 16156 Posetcpo 17147 ltcplt 17148 OPcops 34974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-preset 17135 df-poset 17153 df-plt 17165 df-oposet 34978 |
This theorem is referenced by: opltcon1b 35007 opltcon2b 35008 cvrcon3b 35079 1cvratex 35274 lhprelat3N 35841 |
Copyright terms: Public domain | W3C validator |