|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opltcon3b | Structured version Visualization version GIF version | ||
| Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 31522 analog.) (Contributed by NM, 4-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| opltcon3.b | ⊢ 𝐵 = (Base‘𝐾) | 
| opltcon3.s | ⊢ < = (lt‘𝐾) | 
| opltcon3.o | ⊢ ⊥ = (oc‘𝐾) | 
| Ref | Expression | 
|---|---|
| opltcon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opltcon3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2737 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opltcon3.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | 1, 2, 3 | oplecon3b 39201 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋))) | 
| 5 | 1, 2, 3 | oplecon3b 39201 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) | 
| 6 | 5 | 3com23 1127 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) | 
| 7 | 6 | notbid 318 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) | 
| 8 | 4, 7 | anbi12d 632 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) | 
| 9 | opposet 39182 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 10 | opltcon3.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 11 | 1, 2, 10 | pltval3 18384 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) | 
| 12 | 9, 11 | syl3an1 1164 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) | 
| 13 | 9 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) | 
| 14 | 1, 3 | opoccl 39195 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) | 
| 15 | 14 | 3adant2 1132 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) | 
| 16 | 1, 3 | opoccl 39195 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) | 
| 17 | 16 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) | 
| 18 | 1, 2, 10 | pltval3 18384 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) | 
| 19 | 13, 15, 17, 18 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) | 
| 20 | 8, 12, 19 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 occoc 17305 Posetcpo 18353 ltcplt 18354 OPcops 39173 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-proset 18340 df-poset 18359 df-plt 18375 df-oposet 39177 | 
| This theorem is referenced by: opltcon1b 39206 opltcon2b 39207 cvrcon3b 39278 1cvratex 39475 lhprelat3N 40042 | 
| Copyright terms: Public domain | W3C validator |