Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon3b Structured version   Visualization version   GIF version

Theorem opltcon3b 38538
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 31189 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b 𝐵 = (Base‘𝐾)
opltcon3.s < = (lt‘𝐾)
opltcon3.o = (oc‘𝐾)
Assertion
Ref Expression
opltcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ( 𝑌) < ( 𝑋)))

Proof of Theorem opltcon3b
StepHypRef Expression
1 opltcon3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2731 . . . 4 (le‘𝐾) = (le‘𝐾)
3 opltcon3.o . . . 4 = (oc‘𝐾)
41, 2, 3oplecon3b 38534 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( 𝑋)))
51, 2, 3oplecon3b 38534 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( 𝑌)))
653com23 1125 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( 𝑌)))
76notbid 318 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( 𝑋)(le‘𝐾)( 𝑌)))
84, 7anbi12d 630 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
9 opposet 38515 . . 3 (𝐾 ∈ OP → 𝐾 ∈ Poset)
10 opltcon3.s . . . 4 < = (lt‘𝐾)
111, 2, 10pltval3 18302 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋)))
129, 11syl3an1 1162 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋)))
1393ad2ant1 1132 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
141, 3opoccl 38528 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
15143adant2 1130 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
161, 3opoccl 38528 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
17163adant3 1131 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
181, 2, 10pltval3 18302 . . 3 ((𝐾 ∈ Poset ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌) < ( 𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
1913, 15, 17, 18syl3anc 1370 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) < ( 𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
208, 12, 193bitr4d 311 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ( 𝑌) < ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  Basecbs 17151  lecple 17211  occoc 17212  Posetcpo 18270  ltcplt 18271  OPcops 38506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-proset 18258  df-poset 18276  df-plt 18293  df-oposet 38510
This theorem is referenced by:  opltcon1b  38539  opltcon2b  38540  cvrcon3b  38611  1cvratex  38808  lhprelat3N  39375
  Copyright terms: Public domain W3C validator