![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opltcon3b | Structured version Visualization version GIF version |
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 31532 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
opltcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opltcon3.s | ⊢ < = (lt‘𝐾) |
opltcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opltcon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opltcon3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2735 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opltcon3.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | oplecon3b 39182 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋))) |
5 | 1, 2, 3 | oplecon3b 39182 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
6 | 5 | 3com23 1125 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
7 | 6 | notbid 318 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
8 | 4, 7 | anbi12d 632 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
9 | opposet 39163 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
10 | opltcon3.s | . . . 4 ⊢ < = (lt‘𝐾) | |
11 | 1, 2, 10 | pltval3 18397 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
12 | 9, 11 | syl3an1 1162 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
13 | 9 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
14 | 1, 3 | opoccl 39176 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
15 | 14 | 3adant2 1130 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
16 | 1, 3 | opoccl 39176 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
17 | 16 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
18 | 1, 2, 10 | pltval3 18397 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
19 | 13, 15, 17, 18 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
20 | 8, 12, 19 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 occoc 17306 Posetcpo 18365 ltcplt 18366 OPcops 39154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-proset 18352 df-poset 18371 df-plt 18388 df-oposet 39158 |
This theorem is referenced by: opltcon1b 39187 opltcon2b 39188 cvrcon3b 39259 1cvratex 39456 lhprelat3N 40023 |
Copyright terms: Public domain | W3C validator |