| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opltcon3b | Structured version Visualization version GIF version | ||
| Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 31439 analog.) (Contributed by NM, 4-Nov-2011.) |
| Ref | Expression |
|---|---|
| opltcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
| opltcon3.s | ⊢ < = (lt‘𝐾) |
| opltcon3.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opltcon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opltcon3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opltcon3.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | 1, 2, 3 | oplecon3b 39200 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋))) |
| 5 | 1, 2, 3 | oplecon3b 39200 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
| 6 | 5 | 3com23 1126 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
| 7 | 6 | notbid 318 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌))) |
| 8 | 4, 7 | anbi12d 632 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
| 9 | opposet 39181 | . . 3 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 10 | opltcon3.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 11 | 1, 2, 10 | pltval3 18305 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
| 12 | 9, 11 | syl3an1 1163 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋))) |
| 13 | 9 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 14 | 1, 3 | opoccl 39194 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 16 | 1, 3 | opoccl 39194 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 17 | 16 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 18 | 1, 2, 10 | pltval3 18305 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
| 19 | 13, 15, 17, 18 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘𝑋) ↔ (( ⊥ ‘𝑌)(le‘𝐾)( ⊥ ‘𝑋) ∧ ¬ ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑌)))) |
| 20 | 8, 12, 19 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 occoc 17235 Posetcpo 18275 ltcplt 18276 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-proset 18262 df-poset 18281 df-plt 18296 df-oposet 39176 |
| This theorem is referenced by: opltcon1b 39205 opltcon2b 39206 cvrcon3b 39277 1cvratex 39474 lhprelat3N 40041 |
| Copyright terms: Public domain | W3C validator |