| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ople0 | Structured version Visualization version GIF version | ||
| Description: An element less than or equal to zero equals zero. (chle0 31418 analog.) (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0le.l | ⊢ ≤ = (le‘𝐾) |
| op0le.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| ople0 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | op0le.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | op0le.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | op0le 39224 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| 5 | 4 | biantrud 531 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ (𝑋 ≤ 0 ∧ 0 ≤ 𝑋))) |
| 6 | opposet 39219 | . . . 4 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 8 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 9 | 1, 3 | op0cl 39222 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 11 | 1, 2 | posasymb 18222 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 lecple 17165 Posetcpo 18210 0.cp0 18324 OPcops 39210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-proset 18197 df-poset 18216 df-glb 18248 df-p0 18326 df-oposet 39214 |
| This theorem is referenced by: lub0N 39227 opoc1 39240 atlatmstc 39357 cvrat4 39481 lhpocnle 40054 cdleme22b 40379 tendoid 40811 tendoex 41013 |
| Copyright terms: Public domain | W3C validator |