![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ople0 | Structured version Visualization version GIF version |
Description: An element less than or equal to zero equals zero. (chle0 30684 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
op0le.b | β’ π΅ = (BaseβπΎ) |
op0le.l | β’ β€ = (leβπΎ) |
op0le.z | β’ 0 = (0.βπΎ) |
Ref | Expression |
---|---|
ople0 | β’ ((πΎ β OP β§ π β π΅) β (π β€ 0 β π = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0le.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | op0le.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | op0le.z | . . . 4 β’ 0 = (0.βπΎ) | |
4 | 1, 2, 3 | op0le 38045 | . . 3 β’ ((πΎ β OP β§ π β π΅) β 0 β€ π) |
5 | 4 | biantrud 533 | . 2 β’ ((πΎ β OP β§ π β π΅) β (π β€ 0 β (π β€ 0 β§ 0 β€ π))) |
6 | opposet 38040 | . . . 4 β’ (πΎ β OP β πΎ β Poset) | |
7 | 6 | adantr 482 | . . 3 β’ ((πΎ β OP β§ π β π΅) β πΎ β Poset) |
8 | simpr 486 | . . 3 β’ ((πΎ β OP β§ π β π΅) β π β π΅) | |
9 | 1, 3 | op0cl 38043 | . . . 4 β’ (πΎ β OP β 0 β π΅) |
10 | 9 | adantr 482 | . . 3 β’ ((πΎ β OP β§ π β π΅) β 0 β π΅) |
11 | 1, 2 | posasymb 18269 | . . 3 β’ ((πΎ β Poset β§ π β π΅ β§ 0 β π΅) β ((π β€ 0 β§ 0 β€ π) β π = 0 )) |
12 | 7, 8, 10, 11 | syl3anc 1372 | . 2 β’ ((πΎ β OP β§ π β π΅) β ((π β€ 0 β§ 0 β€ π) β π = 0 )) |
13 | 5, 12 | bitrd 279 | 1 β’ ((πΎ β OP β§ π β π΅) β (π β€ 0 β π = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 class class class wbr 5148 βcfv 6541 Basecbs 17141 lecple 17201 Posetcpo 18257 0.cp0 18373 OPcops 38031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-proset 18245 df-poset 18263 df-glb 18297 df-p0 18375 df-oposet 38035 |
This theorem is referenced by: lub0N 38048 opoc1 38061 atlatmstc 38178 cvrat4 38303 lhpocnle 38876 cdleme22b 39201 tendoid 39633 tendoex 39835 |
Copyright terms: Public domain | W3C validator |