Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ople0 Structured version   Visualization version   GIF version

Theorem ople0 39187
Description: An element less than or equal to zero equals zero. (chle0 31379 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
ople0 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))

Proof of Theorem ople0
StepHypRef Expression
1 op0le.b . . . 4 𝐵 = (Base‘𝐾)
2 op0le.l . . . 4 = (le‘𝐾)
3 op0le.z . . . 4 0 = (0.‘𝐾)
41, 2, 3op0le 39186 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
54biantrud 531 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 0 ↔ (𝑋 00 𝑋)))
6 opposet 39181 . . . 4 (𝐾 ∈ OP → 𝐾 ∈ Poset)
76adantr 480 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
8 simpr 484 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
91, 3op0cl 39184 . . . 4 (𝐾 ∈ OP → 0𝐵)
109adantr 480 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0𝐵)
111, 2posasymb 18287 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵0𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
127, 8, 10, 11syl3anc 1373 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
135, 12bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  Posetcpo 18275  0.cp0 18389  OPcops 39172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-proset 18262  df-poset 18281  df-glb 18313  df-p0 18391  df-oposet 39176
This theorem is referenced by:  lub0N  39189  opoc1  39202  atlatmstc  39319  cvrat4  39444  lhpocnle  40017  cdleme22b  40342  tendoid  40774  tendoex  40976
  Copyright terms: Public domain W3C validator