![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ople0 | Structured version Visualization version GIF version |
Description: An element less than or equal to zero equals zero. (chle0 31129 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
op0le.b | β’ π΅ = (BaseβπΎ) |
op0le.l | β’ β€ = (leβπΎ) |
op0le.z | β’ 0 = (0.βπΎ) |
Ref | Expression |
---|---|
ople0 | β’ ((πΎ β OP β§ π β π΅) β (π β€ 0 β π = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0le.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | op0le.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | op0le.z | . . . 4 β’ 0 = (0.βπΎ) | |
4 | 1, 2, 3 | op0le 38520 | . . 3 β’ ((πΎ β OP β§ π β π΅) β 0 β€ π) |
5 | 4 | biantrud 531 | . 2 β’ ((πΎ β OP β§ π β π΅) β (π β€ 0 β (π β€ 0 β§ 0 β€ π))) |
6 | opposet 38515 | . . . 4 β’ (πΎ β OP β πΎ β Poset) | |
7 | 6 | adantr 480 | . . 3 β’ ((πΎ β OP β§ π β π΅) β πΎ β Poset) |
8 | simpr 484 | . . 3 β’ ((πΎ β OP β§ π β π΅) β π β π΅) | |
9 | 1, 3 | op0cl 38518 | . . . 4 β’ (πΎ β OP β 0 β π΅) |
10 | 9 | adantr 480 | . . 3 β’ ((πΎ β OP β§ π β π΅) β 0 β π΅) |
11 | 1, 2 | posasymb 18282 | . . 3 β’ ((πΎ β Poset β§ π β π΅ β§ 0 β π΅) β ((π β€ 0 β§ 0 β€ π) β π = 0 )) |
12 | 7, 8, 10, 11 | syl3anc 1370 | . 2 β’ ((πΎ β OP β§ π β π΅) β ((π β€ 0 β§ 0 β€ π) β π = 0 )) |
13 | 5, 12 | bitrd 279 | 1 β’ ((πΎ β OP β§ π β π΅) β (π β€ 0 β π = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 Basecbs 17151 lecple 17211 Posetcpo 18270 0.cp0 18386 OPcops 38506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-proset 18258 df-poset 18276 df-glb 18310 df-p0 18388 df-oposet 38510 |
This theorem is referenced by: lub0N 38523 opoc1 38536 atlatmstc 38653 cvrat4 38778 lhpocnle 39351 cdleme22b 39676 tendoid 40108 tendoex 40310 |
Copyright terms: Public domain | W3C validator |