| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ople0 | Structured version Visualization version GIF version | ||
| Description: An element less than or equal to zero equals zero. (chle0 31462 analog.) (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0le.l | ⊢ ≤ = (le‘𝐾) |
| op0le.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| ople0 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | op0le.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | op0le.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | op0le 39187 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
| 5 | 4 | biantrud 531 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ (𝑋 ≤ 0 ∧ 0 ≤ 𝑋))) |
| 6 | opposet 39182 | . . . 4 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 8 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 9 | 1, 3 | op0cl 39185 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 11 | 1, 2 | posasymb 18365 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 Posetcpo 18353 0.cp0 18468 OPcops 39173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-proset 18340 df-poset 18359 df-glb 18392 df-p0 18470 df-oposet 39177 |
| This theorem is referenced by: lub0N 39190 opoc1 39203 atlatmstc 39320 cvrat4 39445 lhpocnle 40018 cdleme22b 40343 tendoid 40775 tendoex 40977 |
| Copyright terms: Public domain | W3C validator |