Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op1le Structured version   Visualization version   GIF version

Theorem op1le 39193
Description: If the orthoposet unity is less than or equal to an element, the element equals the unit. (chle0 31462 analog.) (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
ople1.b 𝐵 = (Base‘𝐾)
ople1.l = (le‘𝐾)
ople1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
op1le ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 𝑋𝑋 = 1 ))

Proof of Theorem op1le
StepHypRef Expression
1 ople1.b . . . 4 𝐵 = (Base‘𝐾)
2 ople1.l . . . 4 = (le‘𝐾)
3 ople1.u . . . 4 1 = (1.‘𝐾)
41, 2, 3ople1 39192 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋 1 )
54biantrurd 532 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 𝑋 ↔ (𝑋 11 𝑋)))
6 opposet 39182 . . . 4 (𝐾 ∈ OP → 𝐾 ∈ Poset)
76adantr 480 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
8 simpr 484 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
91, 3op1cl 39186 . . . 4 (𝐾 ∈ OP → 1𝐵)
109adantr 480 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 1𝐵)
111, 2posasymb 18365 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵1𝐵) → ((𝑋 11 𝑋) ↔ 𝑋 = 1 ))
127, 8, 10, 11syl3anc 1373 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((𝑋 11 𝑋) ↔ 𝑋 = 1 ))
135, 12bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 𝑋𝑋 = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  Posetcpo 18353  1.cp1 18469  OPcops 39173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-proset 18340  df-poset 18359  df-lub 18391  df-p1 18471  df-oposet 39177
This theorem is referenced by:  glb0N  39194  lhpj1  40024
  Copyright terms: Public domain W3C validator