| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > op1le | Structured version Visualization version GIF version | ||
| Description: If the orthoposet unity is less than or equal to an element, the element equals the unit. (chle0 31379 analog.) (Contributed by NM, 5-Dec-2011.) |
| Ref | Expression |
|---|---|
| ople1.b | ⊢ 𝐵 = (Base‘𝐾) |
| ople1.l | ⊢ ≤ = (le‘𝐾) |
| ople1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| op1le | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 ≤ 𝑋 ↔ 𝑋 = 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ople1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | ople1.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | ople1.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 4 | 1, 2, 3 | ople1 39191 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 1 ) |
| 5 | 4 | biantrurd 532 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 ≤ 𝑋 ↔ (𝑋 ≤ 1 ∧ 1 ≤ 𝑋))) |
| 6 | opposet 39181 | . . . 4 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 8 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 9 | 1, 3 | op1cl 39185 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
| 11 | 1, 2 | posasymb 18287 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((𝑋 ≤ 1 ∧ 1 ≤ 𝑋) ↔ 𝑋 = 1 )) |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((𝑋 ≤ 1 ∧ 1 ≤ 𝑋) ↔ 𝑋 = 1 )) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 ≤ 𝑋 ↔ 𝑋 = 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 1.cp1 18390 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-proset 18262 df-poset 18281 df-lub 18312 df-p1 18392 df-oposet 39176 |
| This theorem is referenced by: glb0N 39193 lhpj1 40023 |
| Copyright terms: Public domain | W3C validator |