Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op1le Structured version   Visualization version   GIF version

Theorem op1le 39174
Description: If the orthoposet unity is less than or equal to an element, the element equals the unit. (chle0 31472 analog.) (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
ople1.b 𝐵 = (Base‘𝐾)
ople1.l = (le‘𝐾)
ople1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
op1le ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 𝑋𝑋 = 1 ))

Proof of Theorem op1le
StepHypRef Expression
1 ople1.b . . . 4 𝐵 = (Base‘𝐾)
2 ople1.l . . . 4 = (le‘𝐾)
3 ople1.u . . . 4 1 = (1.‘𝐾)
41, 2, 3ople1 39173 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋 1 )
54biantrurd 532 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 𝑋 ↔ (𝑋 11 𝑋)))
6 opposet 39163 . . . 4 (𝐾 ∈ OP → 𝐾 ∈ Poset)
76adantr 480 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
8 simpr 484 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
91, 3op1cl 39167 . . . 4 (𝐾 ∈ OP → 1𝐵)
109adantr 480 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 1𝐵)
111, 2posasymb 18377 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵1𝐵) → ((𝑋 11 𝑋) ↔ 𝑋 = 1 ))
127, 8, 10, 11syl3anc 1370 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((𝑋 11 𝑋) ↔ 𝑋 = 1 ))
135, 12bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 1 𝑋𝑋 = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  Posetcpo 18365  1.cp1 18482  OPcops 39154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-proset 18352  df-poset 18371  df-lub 18404  df-p1 18484  df-oposet 39158
This theorem is referenced by:  glb0N  39175  lhpj1  40005
  Copyright terms: Public domain W3C validator