Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcea Structured version   Visualization version   GIF version

Theorem dalemcea 37411
Description: Lemma for dath 37487. Frequently-used utility lemma. Here we show that 𝐶 must be an atom. This is an assumption in most presentations of Desargues's theorem; instead, we assume only the 𝐶 is a lattice element, in order to make later substitutions for 𝐶 easier. (Contributed by NM, 23-Sep-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem1.o 𝑂 = (LPlanes‘𝐾)
dalem1.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemcea (𝜑𝐶𝐴)

Proof of Theorem dalemcea
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkeop 37376 . . 3 (𝜑𝐾 ∈ OP)
3 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 37389 . . 3 (𝜑𝐶 ∈ (Base‘𝐾))
51dalemkehl 37374 . . . 4 (𝜑𝐾 ∈ HL)
6 dalemc.l . . . . 5 = (le‘𝐾)
7 dalemc.j . . . . 5 = (join‘𝐾)
8 dalem1.o . . . . 5 𝑂 = (LPlanes‘𝐾)
9 dalem1.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
101, 6, 7, 3, 8, 9dalempjsen 37404 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
111dalemqea 37378 . . . . 5 (𝜑𝑄𝐴)
121dalemtea 37381 . . . . 5 (𝜑𝑇𝐴)
131, 6, 7, 3, 8, 9dalemqnet 37403 . . . . 5 (𝜑𝑄𝑇)
14 eqid 2737 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
157, 3, 14llni2 37263 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
165, 11, 12, 13, 15syl31anc 1375 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (LLines‘𝐾))
171, 6, 7, 3, 8, 9dalem1 37410 . . . 4 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))
181dalem-clpjq 37388 . . . . . . . 8 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
191, 7, 3dalempjqeb 37396 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
20 eqid 2737 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2737 . . . . . . . . . . . 12 (0.‘𝐾) = (0.‘𝐾)
2220, 6, 21op0le 36937 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) (𝑃 𝑄))
232, 19, 22syl2anc 587 . . . . . . . . . 10 (𝜑 → (0.‘𝐾) (𝑃 𝑄))
24 breq1 5056 . . . . . . . . . 10 (𝐶 = (0.‘𝐾) → (𝐶 (𝑃 𝑄) ↔ (0.‘𝐾) (𝑃 𝑄)))
2523, 24syl5ibrcom 250 . . . . . . . . 9 (𝜑 → (𝐶 = (0.‘𝐾) → 𝐶 (𝑃 𝑄)))
2625necon3bd 2954 . . . . . . . 8 (𝜑 → (¬ 𝐶 (𝑃 𝑄) → 𝐶 ≠ (0.‘𝐾)))
2718, 26mpd 15 . . . . . . 7 (𝜑𝐶 ≠ (0.‘𝐾))
28 eqid 2737 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
2920, 28, 21opltn0 36941 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
302, 4, 29syl2anc 587 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
3127, 30mpbird 260 . . . . . 6 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝐶)
321dalemclpjs 37385 . . . . . . 7 (𝜑𝐶 (𝑃 𝑆))
331dalemclqjt 37386 . . . . . . 7 (𝜑𝐶 (𝑄 𝑇))
341dalemkelat 37375 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
351dalempea 37377 . . . . . . . . 9 (𝜑𝑃𝐴)
361dalemsea 37380 . . . . . . . . 9 (𝜑𝑆𝐴)
3720, 7, 3hlatjcl 37118 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
385, 35, 36, 37syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
3920, 7, 3hlatjcl 37118 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
405, 11, 12, 39syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
41 eqid 2737 . . . . . . . . 9 (meet‘𝐾) = (meet‘𝐾)
4220, 6, 41latlem12 17972 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4334, 4, 38, 40, 42syl13anc 1374 . . . . . . 7 (𝜑 → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4432, 33, 43mpbi2and 712 . . . . . 6 (𝜑𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
45 opposet 36932 . . . . . . . 8 (𝐾 ∈ OP → 𝐾 ∈ Poset)
462, 45syl 17 . . . . . . 7 (𝜑𝐾 ∈ Poset)
4720, 21op0cl 36935 . . . . . . . 8 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
482, 47syl 17 . . . . . . 7 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
4920, 41latmcl 17946 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5034, 38, 40, 49syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5120, 6, 28pltletr 17849 . . . . . . 7 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5246, 48, 4, 50, 51syl13anc 1374 . . . . . 6 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5331, 44, 52mp2and 699 . . . . 5 (𝜑 → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
5420, 28, 21opltn0 36941 . . . . . 6 ((𝐾 ∈ OP ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
552, 50, 54syl2anc 587 . . . . 5 (𝜑 → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
5653, 55mpbid 235 . . . 4 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))
5741, 21, 3, 142llnmat 37275 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑆) ≠ (𝑄 𝑇) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
585, 10, 16, 17, 56, 57syl32anc 1380 . . 3 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
5920, 6, 21, 3leat2 37045 . . 3 (((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴) ∧ (𝐶 ≠ (0.‘𝐾) ∧ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))) → 𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
602, 4, 58, 27, 44, 59syl32anc 1380 . 2 (𝜑𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
6160, 58eqeltrd 2838 1 (𝜑𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  Posetcpo 17814  ltcplt 17815  joincjn 17818  meetcmee 17819  0.cp0 17929  Latclat 17937  OPcops 36923  Atomscatm 37014  HLchlt 37101  LLinesclln 37242  LPlanesclpl 37243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250
This theorem is referenced by:  dalem2  37412  dalem5  37418  dalem-cly  37422  dalem9  37423  dalem19  37433  dalem21  37445  dalem25  37449
  Copyright terms: Public domain W3C validator