Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcea Structured version   Visualization version   GIF version

Theorem dalemcea 39627
Description: Lemma for dath 39703. Frequently-used utility lemma. Here we show that 𝐶 must be an atom. This is an assumption in most presentations of Desargues's theorem; instead, we assume only the 𝐶 is a lattice element, in order to make later substitutions for 𝐶 easier. (Contributed by NM, 23-Sep-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem1.o 𝑂 = (LPlanes‘𝐾)
dalem1.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemcea (𝜑𝐶𝐴)

Proof of Theorem dalemcea
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkeop 39592 . . 3 (𝜑𝐾 ∈ OP)
3 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 39605 . . 3 (𝜑𝐶 ∈ (Base‘𝐾))
51dalemkehl 39590 . . . 4 (𝜑𝐾 ∈ HL)
6 dalemc.l . . . . 5 = (le‘𝐾)
7 dalemc.j . . . . 5 = (join‘𝐾)
8 dalem1.o . . . . 5 𝑂 = (LPlanes‘𝐾)
9 dalem1.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
101, 6, 7, 3, 8, 9dalempjsen 39620 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
111dalemqea 39594 . . . . 5 (𝜑𝑄𝐴)
121dalemtea 39597 . . . . 5 (𝜑𝑇𝐴)
131, 6, 7, 3, 8, 9dalemqnet 39619 . . . . 5 (𝜑𝑄𝑇)
14 eqid 2729 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
157, 3, 14llni2 39479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
165, 11, 12, 13, 15syl31anc 1375 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (LLines‘𝐾))
171, 6, 7, 3, 8, 9dalem1 39626 . . . 4 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))
181dalem-clpjq 39604 . . . . . . . 8 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
191, 7, 3dalempjqeb 39612 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
20 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2729 . . . . . . . . . . . 12 (0.‘𝐾) = (0.‘𝐾)
2220, 6, 21op0le 39152 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) (𝑃 𝑄))
232, 19, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → (0.‘𝐾) (𝑃 𝑄))
24 breq1 5105 . . . . . . . . . 10 (𝐶 = (0.‘𝐾) → (𝐶 (𝑃 𝑄) ↔ (0.‘𝐾) (𝑃 𝑄)))
2523, 24syl5ibrcom 247 . . . . . . . . 9 (𝜑 → (𝐶 = (0.‘𝐾) → 𝐶 (𝑃 𝑄)))
2625necon3bd 2939 . . . . . . . 8 (𝜑 → (¬ 𝐶 (𝑃 𝑄) → 𝐶 ≠ (0.‘𝐾)))
2718, 26mpd 15 . . . . . . 7 (𝜑𝐶 ≠ (0.‘𝐾))
28 eqid 2729 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
2920, 28, 21opltn0 39156 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
302, 4, 29syl2anc 584 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
3127, 30mpbird 257 . . . . . 6 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝐶)
321dalemclpjs 39601 . . . . . . 7 (𝜑𝐶 (𝑃 𝑆))
331dalemclqjt 39602 . . . . . . 7 (𝜑𝐶 (𝑄 𝑇))
341dalemkelat 39591 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
351dalempea 39593 . . . . . . . . 9 (𝜑𝑃𝐴)
361dalemsea 39596 . . . . . . . . 9 (𝜑𝑆𝐴)
3720, 7, 3hlatjcl 39333 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
385, 35, 36, 37syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
3920, 7, 3hlatjcl 39333 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
405, 11, 12, 39syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
41 eqid 2729 . . . . . . . . 9 (meet‘𝐾) = (meet‘𝐾)
4220, 6, 41latlem12 18401 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4334, 4, 38, 40, 42syl13anc 1374 . . . . . . 7 (𝜑 → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4432, 33, 43mpbi2and 712 . . . . . 6 (𝜑𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
45 opposet 39147 . . . . . . . 8 (𝐾 ∈ OP → 𝐾 ∈ Poset)
462, 45syl 17 . . . . . . 7 (𝜑𝐾 ∈ Poset)
4720, 21op0cl 39150 . . . . . . . 8 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
482, 47syl 17 . . . . . . 7 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
4920, 41latmcl 18375 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5034, 38, 40, 49syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5120, 6, 28pltletr 18278 . . . . . . 7 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5246, 48, 4, 50, 51syl13anc 1374 . . . . . 6 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5331, 44, 52mp2and 699 . . . . 5 (𝜑 → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
5420, 28, 21opltn0 39156 . . . . . 6 ((𝐾 ∈ OP ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
552, 50, 54syl2anc 584 . . . . 5 (𝜑 → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
5653, 55mpbid 232 . . . 4 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))
5741, 21, 3, 142llnmat 39491 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑆) ≠ (𝑄 𝑇) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
585, 10, 16, 17, 56, 57syl32anc 1380 . . 3 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
5920, 6, 21, 3leat2 39260 . . 3 (((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴) ∧ (𝐶 ≠ (0.‘𝐾) ∧ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))) → 𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
602, 4, 58, 27, 44, 59syl32anc 1380 . 2 (𝜑𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
6160, 58eqeltrd 2828 1 (𝜑𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  Posetcpo 18244  ltcplt 18245  joincjn 18248  meetcmee 18249  0.cp0 18358  Latclat 18366  OPcops 39138  Atomscatm 39229  HLchlt 39316  LLinesclln 39458  LPlanesclpl 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466
This theorem is referenced by:  dalem2  39628  dalem5  39634  dalem-cly  39638  dalem9  39639  dalem19  39649  dalem21  39661  dalem25  39665
  Copyright terms: Public domain W3C validator