Proof of Theorem dalemcea
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dalema.ph | . . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | 
| 2 | 1 | dalemkeop 39628 | . . 3
⊢ (𝜑 → 𝐾 ∈ OP) | 
| 3 |  | dalemc.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 | 1, 3 | dalemceb 39641 | . . 3
⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) | 
| 5 | 1 | dalemkehl 39626 | . . . 4
⊢ (𝜑 → 𝐾 ∈ HL) | 
| 6 |  | dalemc.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 7 |  | dalemc.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 8 |  | dalem1.o | . . . . 5
⊢ 𝑂 = (LPlanes‘𝐾) | 
| 9 |  | dalem1.y | . . . . 5
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | 
| 10 | 1, 6, 7, 3, 8, 9 | dalempjsen 39656 | . . . 4
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾)) | 
| 11 | 1 | dalemqea 39630 | . . . . 5
⊢ (𝜑 → 𝑄 ∈ 𝐴) | 
| 12 | 1 | dalemtea 39633 | . . . . 5
⊢ (𝜑 → 𝑇 ∈ 𝐴) | 
| 13 | 1, 6, 7, 3, 8, 9 | dalemqnet 39655 | . . . . 5
⊢ (𝜑 → 𝑄 ≠ 𝑇) | 
| 14 |  | eqid 2736 | . . . . . 6
⊢
(LLines‘𝐾) =
(LLines‘𝐾) | 
| 15 | 7, 3, 14 | llni2 39515 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑄 ≠ 𝑇) → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) | 
| 16 | 5, 11, 12, 13, 15 | syl31anc 1374 | . . . 4
⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) | 
| 17 | 1, 6, 7, 3, 8, 9 | dalem1 39662 | . . . 4
⊢ (𝜑 → (𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇)) | 
| 18 | 1 | dalem-clpjq 39640 | . . . . . . . 8
⊢ (𝜑 → ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) | 
| 19 | 1, 7, 3 | dalempjqeb 39648 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 20 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 21 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 22 | 20, 6, 21 | op0le 39188 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) ≤ (𝑃 ∨ 𝑄)) | 
| 23 | 2, 19, 22 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → (0.‘𝐾) ≤ (𝑃 ∨ 𝑄)) | 
| 24 |  | breq1 5145 | . . . . . . . . . 10
⊢ (𝐶 = (0.‘𝐾) → (𝐶 ≤ (𝑃 ∨ 𝑄) ↔ (0.‘𝐾) ≤ (𝑃 ∨ 𝑄))) | 
| 25 | 23, 24 | syl5ibrcom 247 | . . . . . . . . 9
⊢ (𝜑 → (𝐶 = (0.‘𝐾) → 𝐶 ≤ (𝑃 ∨ 𝑄))) | 
| 26 | 25 | necon3bd 2953 | . . . . . . . 8
⊢ (𝜑 → (¬ 𝐶 ≤ (𝑃 ∨ 𝑄) → 𝐶 ≠ (0.‘𝐾))) | 
| 27 | 18, 26 | mpd 15 | . . . . . . 7
⊢ (𝜑 → 𝐶 ≠ (0.‘𝐾)) | 
| 28 |  | eqid 2736 | . . . . . . . . 9
⊢
(lt‘𝐾) =
(lt‘𝐾) | 
| 29 | 20, 28, 21 | opltn0 39192 | . . . . . . . 8
⊢ ((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝐶 ↔ 𝐶 ≠ (0.‘𝐾))) | 
| 30 | 2, 4, 29 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → ((0.‘𝐾)(lt‘𝐾)𝐶 ↔ 𝐶 ≠ (0.‘𝐾))) | 
| 31 | 27, 30 | mpbird 257 | . . . . . 6
⊢ (𝜑 → (0.‘𝐾)(lt‘𝐾)𝐶) | 
| 32 | 1 | dalemclpjs 39637 | . . . . . . 7
⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) | 
| 33 | 1 | dalemclqjt 39638 | . . . . . . 7
⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) | 
| 34 | 1 | dalemkelat 39627 | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Lat) | 
| 35 | 1 | dalempea 39629 | . . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ 𝐴) | 
| 36 | 1 | dalemsea 39632 | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ 𝐴) | 
| 37 | 20, 7, 3 | hlatjcl 39369 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 38 | 5, 35, 36, 37 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 39 | 20, 7, 3 | hlatjcl 39369 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) | 
| 40 | 5, 11, 12, 39 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) | 
| 41 |  | eqid 2736 | . . . . . . . . 9
⊢
(meet‘𝐾) =
(meet‘𝐾) | 
| 42 | 20, 6, 41 | latlem12 18512 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾))) → ((𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇)) ↔ 𝐶 ≤ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)))) | 
| 43 | 34, 4, 38, 40, 42 | syl13anc 1373 | . . . . . . 7
⊢ (𝜑 → ((𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇)) ↔ 𝐶 ≤ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)))) | 
| 44 | 32, 33, 43 | mpbi2and 712 | . . . . . 6
⊢ (𝜑 → 𝐶 ≤ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇))) | 
| 45 |  | opposet 39183 | . . . . . . . 8
⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | 
| 46 | 2, 45 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Poset) | 
| 47 | 20, 21 | op0cl 39186 | . . . . . . . 8
⊢ (𝐾 ∈ OP →
(0.‘𝐾) ∈
(Base‘𝐾)) | 
| 48 | 2, 47 | syl 17 | . . . . . . 7
⊢ (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾)) | 
| 49 | 20, 41 | latmcl 18486 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) | 
| 50 | 34, 38, 40, 49 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) | 
| 51 | 20, 6, 28 | pltletr 18389 | . . . . . . 7
⊢ ((𝐾 ∈ Poset ∧
((0.‘𝐾) ∈
(Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝐶 ∧ 𝐶 ≤ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)))) | 
| 52 | 46, 48, 4, 50, 51 | syl13anc 1373 | . . . . . 6
⊢ (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝐶 ∧ 𝐶 ≤ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)))) | 
| 53 | 31, 44, 52 | mp2and 699 | . . . . 5
⊢ (𝜑 → (0.‘𝐾)(lt‘𝐾)((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇))) | 
| 54 | 20, 28, 21 | opltn0 39192 | . . . . . 6
⊢ ((𝐾 ∈ OP ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ↔ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾))) | 
| 55 | 2, 50, 54 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ((0.‘𝐾)(lt‘𝐾)((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ↔ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾))) | 
| 56 | 53, 55 | mpbid 232 | . . . 4
⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) | 
| 57 | 41, 21, 3, 14 | 2llnmat 39527 | . . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇) ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) | 
| 58 | 5, 10, 16, 17, 56, 57 | syl32anc 1379 | . . 3
⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) | 
| 59 | 20, 6, 21, 3 | leat2 39296 | . . 3
⊢ (((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) ∧ (𝐶 ≠ (0.‘𝐾) ∧ 𝐶 ≤ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)))) → 𝐶 = ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇))) | 
| 60 | 2, 4, 58, 27, 44, 59 | syl32anc 1379 | . 2
⊢ (𝜑 → 𝐶 = ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇))) | 
| 61 | 60, 58 | eqeltrd 2840 | 1
⊢ (𝜑 → 𝐶 ∈ 𝐴) |