Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcea Structured version   Visualization version   GIF version

Theorem dalemcea 39654
Description: Lemma for dath 39730. Frequently-used utility lemma. Here we show that 𝐶 must be an atom. This is an assumption in most presentations of Desargues's theorem; instead, we assume only the 𝐶 is a lattice element, in order to make later substitutions for 𝐶 easier. (Contributed by NM, 23-Sep-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem1.o 𝑂 = (LPlanes‘𝐾)
dalem1.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemcea (𝜑𝐶𝐴)

Proof of Theorem dalemcea
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkeop 39619 . . 3 (𝜑𝐾 ∈ OP)
3 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 39632 . . 3 (𝜑𝐶 ∈ (Base‘𝐾))
51dalemkehl 39617 . . . 4 (𝜑𝐾 ∈ HL)
6 dalemc.l . . . . 5 = (le‘𝐾)
7 dalemc.j . . . . 5 = (join‘𝐾)
8 dalem1.o . . . . 5 𝑂 = (LPlanes‘𝐾)
9 dalem1.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
101, 6, 7, 3, 8, 9dalempjsen 39647 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
111dalemqea 39621 . . . . 5 (𝜑𝑄𝐴)
121dalemtea 39624 . . . . 5 (𝜑𝑇𝐴)
131, 6, 7, 3, 8, 9dalemqnet 39646 . . . . 5 (𝜑𝑄𝑇)
14 eqid 2729 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
157, 3, 14llni2 39506 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
165, 11, 12, 13, 15syl31anc 1375 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (LLines‘𝐾))
171, 6, 7, 3, 8, 9dalem1 39653 . . . 4 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))
181dalem-clpjq 39631 . . . . . . . 8 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
191, 7, 3dalempjqeb 39639 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
20 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2729 . . . . . . . . . . . 12 (0.‘𝐾) = (0.‘𝐾)
2220, 6, 21op0le 39179 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) (𝑃 𝑄))
232, 19, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → (0.‘𝐾) (𝑃 𝑄))
24 breq1 5110 . . . . . . . . . 10 (𝐶 = (0.‘𝐾) → (𝐶 (𝑃 𝑄) ↔ (0.‘𝐾) (𝑃 𝑄)))
2523, 24syl5ibrcom 247 . . . . . . . . 9 (𝜑 → (𝐶 = (0.‘𝐾) → 𝐶 (𝑃 𝑄)))
2625necon3bd 2939 . . . . . . . 8 (𝜑 → (¬ 𝐶 (𝑃 𝑄) → 𝐶 ≠ (0.‘𝐾)))
2718, 26mpd 15 . . . . . . 7 (𝜑𝐶 ≠ (0.‘𝐾))
28 eqid 2729 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
2920, 28, 21opltn0 39183 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
302, 4, 29syl2anc 584 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
3127, 30mpbird 257 . . . . . 6 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝐶)
321dalemclpjs 39628 . . . . . . 7 (𝜑𝐶 (𝑃 𝑆))
331dalemclqjt 39629 . . . . . . 7 (𝜑𝐶 (𝑄 𝑇))
341dalemkelat 39618 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
351dalempea 39620 . . . . . . . . 9 (𝜑𝑃𝐴)
361dalemsea 39623 . . . . . . . . 9 (𝜑𝑆𝐴)
3720, 7, 3hlatjcl 39360 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
385, 35, 36, 37syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
3920, 7, 3hlatjcl 39360 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
405, 11, 12, 39syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
41 eqid 2729 . . . . . . . . 9 (meet‘𝐾) = (meet‘𝐾)
4220, 6, 41latlem12 18425 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4334, 4, 38, 40, 42syl13anc 1374 . . . . . . 7 (𝜑 → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4432, 33, 43mpbi2and 712 . . . . . 6 (𝜑𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
45 opposet 39174 . . . . . . . 8 (𝐾 ∈ OP → 𝐾 ∈ Poset)
462, 45syl 17 . . . . . . 7 (𝜑𝐾 ∈ Poset)
4720, 21op0cl 39177 . . . . . . . 8 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
482, 47syl 17 . . . . . . 7 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
4920, 41latmcl 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5034, 38, 40, 49syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5120, 6, 28pltletr 18302 . . . . . . 7 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5246, 48, 4, 50, 51syl13anc 1374 . . . . . 6 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5331, 44, 52mp2and 699 . . . . 5 (𝜑 → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
5420, 28, 21opltn0 39183 . . . . . 6 ((𝐾 ∈ OP ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
552, 50, 54syl2anc 584 . . . . 5 (𝜑 → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
5653, 55mpbid 232 . . . 4 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))
5741, 21, 3, 142llnmat 39518 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑆) ≠ (𝑄 𝑇) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
585, 10, 16, 17, 56, 57syl32anc 1380 . . 3 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
5920, 6, 21, 3leat2 39287 . . 3 (((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴) ∧ (𝐶 ≠ (0.‘𝐾) ∧ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))) → 𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
602, 4, 58, 27, 44, 59syl32anc 1380 . 2 (𝜑𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
6160, 58eqeltrd 2828 1 (𝜑𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  Posetcpo 18268  ltcplt 18269  joincjn 18272  meetcmee 18273  0.cp0 18382  Latclat 18390  OPcops 39165  Atomscatm 39256  HLchlt 39343  LLinesclln 39485  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493
This theorem is referenced by:  dalem2  39655  dalem5  39661  dalem-cly  39665  dalem9  39666  dalem19  39676  dalem21  39688  dalem25  39692
  Copyright terms: Public domain W3C validator