Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcea Structured version   Visualization version   GIF version

Theorem dalemcea 38519
Description: Lemma for dath 38595. Frequently-used utility lemma. Here we show that 𝐢 must be an atom. This is an assumption in most presentations of Desargues's theorem; instead, we assume only the 𝐢 is a lattice element, in order to make later substitutions for 𝐢 easier. (Contributed by NM, 23-Sep-2012.)
Hypotheses
Ref Expression
dalema.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
dalemc.l ≀ = (leβ€˜πΎ)
dalemc.j ∨ = (joinβ€˜πΎ)
dalemc.a 𝐴 = (Atomsβ€˜πΎ)
dalem1.o 𝑂 = (LPlanesβ€˜πΎ)
dalem1.y π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
Assertion
Ref Expression
dalemcea (πœ‘ β†’ 𝐢 ∈ 𝐴)

Proof of Theorem dalemcea
StepHypRef Expression
1 dalema.ph . . . 4 (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
21dalemkeop 38484 . . 3 (πœ‘ β†’ 𝐾 ∈ OP)
3 dalemc.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
41, 3dalemceb 38497 . . 3 (πœ‘ β†’ 𝐢 ∈ (Baseβ€˜πΎ))
51dalemkehl 38482 . . . 4 (πœ‘ β†’ 𝐾 ∈ HL)
6 dalemc.l . . . . 5 ≀ = (leβ€˜πΎ)
7 dalemc.j . . . . 5 ∨ = (joinβ€˜πΎ)
8 dalem1.o . . . . 5 𝑂 = (LPlanesβ€˜πΎ)
9 dalem1.y . . . . 5 π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
101, 6, 7, 3, 8, 9dalempjsen 38512 . . . 4 (πœ‘ β†’ (𝑃 ∨ 𝑆) ∈ (LLinesβ€˜πΎ))
111dalemqea 38486 . . . . 5 (πœ‘ β†’ 𝑄 ∈ 𝐴)
121dalemtea 38489 . . . . 5 (πœ‘ β†’ 𝑇 ∈ 𝐴)
131, 6, 7, 3, 8, 9dalemqnet 38511 . . . . 5 (πœ‘ β†’ 𝑄 β‰  𝑇)
14 eqid 2732 . . . . . 6 (LLinesβ€˜πΎ) = (LLinesβ€˜πΎ)
157, 3, 14llni2 38371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑄 β‰  𝑇) β†’ (𝑄 ∨ 𝑇) ∈ (LLinesβ€˜πΎ))
165, 11, 12, 13, 15syl31anc 1373 . . . 4 (πœ‘ β†’ (𝑄 ∨ 𝑇) ∈ (LLinesβ€˜πΎ))
171, 6, 7, 3, 8, 9dalem1 38518 . . . 4 (πœ‘ β†’ (𝑃 ∨ 𝑆) β‰  (𝑄 ∨ 𝑇))
181dalem-clpjq 38496 . . . . . . . 8 (πœ‘ β†’ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄))
191, 7, 3dalempjqeb 38504 . . . . . . . . . . 11 (πœ‘ β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
20 eqid 2732 . . . . . . . . . . . 12 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
21 eqid 2732 . . . . . . . . . . . 12 (0.β€˜πΎ) = (0.β€˜πΎ)
2220, 6, 21op0le 38044 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ (0.β€˜πΎ) ≀ (𝑃 ∨ 𝑄))
232, 19, 22syl2anc 584 . . . . . . . . . 10 (πœ‘ β†’ (0.β€˜πΎ) ≀ (𝑃 ∨ 𝑄))
24 breq1 5150 . . . . . . . . . 10 (𝐢 = (0.β€˜πΎ) β†’ (𝐢 ≀ (𝑃 ∨ 𝑄) ↔ (0.β€˜πΎ) ≀ (𝑃 ∨ 𝑄)))
2523, 24syl5ibrcom 246 . . . . . . . . 9 (πœ‘ β†’ (𝐢 = (0.β€˜πΎ) β†’ 𝐢 ≀ (𝑃 ∨ 𝑄)))
2625necon3bd 2954 . . . . . . . 8 (πœ‘ β†’ (Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) β†’ 𝐢 β‰  (0.β€˜πΎ)))
2718, 26mpd 15 . . . . . . 7 (πœ‘ β†’ 𝐢 β‰  (0.β€˜πΎ))
28 eqid 2732 . . . . . . . . 9 (ltβ€˜πΎ) = (ltβ€˜πΎ)
2920, 28, 21opltn0 38048 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝐢 ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ)(ltβ€˜πΎ)𝐢 ↔ 𝐢 β‰  (0.β€˜πΎ)))
302, 4, 29syl2anc 584 . . . . . . 7 (πœ‘ β†’ ((0.β€˜πΎ)(ltβ€˜πΎ)𝐢 ↔ 𝐢 β‰  (0.β€˜πΎ)))
3127, 30mpbird 256 . . . . . 6 (πœ‘ β†’ (0.β€˜πΎ)(ltβ€˜πΎ)𝐢)
321dalemclpjs 38493 . . . . . . 7 (πœ‘ β†’ 𝐢 ≀ (𝑃 ∨ 𝑆))
331dalemclqjt 38494 . . . . . . 7 (πœ‘ β†’ 𝐢 ≀ (𝑄 ∨ 𝑇))
341dalemkelat 38483 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ Lat)
351dalempea 38485 . . . . . . . . 9 (πœ‘ β†’ 𝑃 ∈ 𝐴)
361dalemsea 38488 . . . . . . . . 9 (πœ‘ β†’ 𝑆 ∈ 𝐴)
3720, 7, 3hlatjcl 38225 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
385, 35, 36, 37syl3anc 1371 . . . . . . . 8 (πœ‘ β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
3920, 7, 3hlatjcl 38225 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
405, 11, 12, 39syl3anc 1371 . . . . . . . 8 (πœ‘ β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
41 eqid 2732 . . . . . . . . 9 (meetβ€˜πΎ) = (meetβ€˜πΎ)
4220, 6, 41latlem12 18415 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐢 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇))))
4334, 4, 38, 40, 42syl13anc 1372 . . . . . . 7 (πœ‘ β†’ ((𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇))))
4432, 33, 43mpbi2and 710 . . . . . 6 (πœ‘ β†’ 𝐢 ≀ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)))
45 opposet 38039 . . . . . . . 8 (𝐾 ∈ OP β†’ 𝐾 ∈ Poset)
462, 45syl 17 . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ Poset)
4720, 21op0cl 38042 . . . . . . . 8 (𝐾 ∈ OP β†’ (0.β€˜πΎ) ∈ (Baseβ€˜πΎ))
482, 47syl 17 . . . . . . 7 (πœ‘ β†’ (0.β€˜πΎ) ∈ (Baseβ€˜πΎ))
4920, 41latmcl 18389 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
5034, 38, 40, 49syl3anc 1371 . . . . . . 7 (πœ‘ β†’ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
5120, 6, 28pltletr 18292 . . . . . . 7 ((𝐾 ∈ Poset ∧ ((0.β€˜πΎ) ∈ (Baseβ€˜πΎ) ∧ 𝐢 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))) β†’ (((0.β€˜πΎ)(ltβ€˜πΎ)𝐢 ∧ 𝐢 ≀ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇))) β†’ (0.β€˜πΎ)(ltβ€˜πΎ)((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇))))
5246, 48, 4, 50, 51syl13anc 1372 . . . . . 6 (πœ‘ β†’ (((0.β€˜πΎ)(ltβ€˜πΎ)𝐢 ∧ 𝐢 ≀ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇))) β†’ (0.β€˜πΎ)(ltβ€˜πΎ)((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇))))
5331, 44, 52mp2and 697 . . . . 5 (πœ‘ β†’ (0.β€˜πΎ)(ltβ€˜πΎ)((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)))
5420, 28, 21opltn0 38048 . . . . . 6 ((𝐾 ∈ OP ∧ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ)(ltβ€˜πΎ)((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ↔ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) β‰  (0.β€˜πΎ)))
552, 50, 54syl2anc 584 . . . . 5 (πœ‘ β†’ ((0.β€˜πΎ)(ltβ€˜πΎ)((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ↔ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) β‰  (0.β€˜πΎ)))
5653, 55mpbid 231 . . . 4 (πœ‘ β†’ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) β‰  (0.β€˜πΎ))
5741, 21, 3, 142llnmat 38383 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLinesβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (LLinesβ€˜πΎ)) ∧ ((𝑃 ∨ 𝑆) β‰  (𝑄 ∨ 𝑇) ∧ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) β‰  (0.β€˜πΎ))) β†’ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ∈ 𝐴)
585, 10, 16, 17, 56, 57syl32anc 1378 . . 3 (πœ‘ β†’ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ∈ 𝐴)
5920, 6, 21, 3leat2 38152 . . 3 (((𝐾 ∈ OP ∧ 𝐢 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)) ∈ 𝐴) ∧ (𝐢 β‰  (0.β€˜πΎ) ∧ 𝐢 ≀ ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)))) β†’ 𝐢 = ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)))
602, 4, 58, 27, 44, 59syl32anc 1378 . 2 (πœ‘ β†’ 𝐢 = ((𝑃 ∨ 𝑆)(meetβ€˜πΎ)(𝑄 ∨ 𝑇)))
6160, 58eqeltrd 2833 1 (πœ‘ β†’ 𝐢 ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  Posetcpo 18256  ltcplt 18257  joincjn 18260  meetcmee 18261  0.cp0 18372  Latclat 18380  OPcops 38030  Atomscatm 38121  HLchlt 38208  LLinesclln 38350  LPlanesclpl 38351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358
This theorem is referenced by:  dalem2  38520  dalem5  38526  dalem-cly  38530  dalem9  38531  dalem19  38541  dalem21  38553  dalem25  38557
  Copyright terms: Public domain W3C validator