Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcea Structured version   Visualization version   GIF version

Theorem dalemcea 39617
Description: Lemma for dath 39693. Frequently-used utility lemma. Here we show that 𝐶 must be an atom. This is an assumption in most presentations of Desargues's theorem; instead, we assume only the 𝐶 is a lattice element, in order to make later substitutions for 𝐶 easier. (Contributed by NM, 23-Sep-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem1.o 𝑂 = (LPlanes‘𝐾)
dalem1.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemcea (𝜑𝐶𝐴)

Proof of Theorem dalemcea
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkeop 39582 . . 3 (𝜑𝐾 ∈ OP)
3 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 39595 . . 3 (𝜑𝐶 ∈ (Base‘𝐾))
51dalemkehl 39580 . . . 4 (𝜑𝐾 ∈ HL)
6 dalemc.l . . . . 5 = (le‘𝐾)
7 dalemc.j . . . . 5 = (join‘𝐾)
8 dalem1.o . . . . 5 𝑂 = (LPlanes‘𝐾)
9 dalem1.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
101, 6, 7, 3, 8, 9dalempjsen 39610 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
111dalemqea 39584 . . . . 5 (𝜑𝑄𝐴)
121dalemtea 39587 . . . . 5 (𝜑𝑇𝐴)
131, 6, 7, 3, 8, 9dalemqnet 39609 . . . . 5 (𝜑𝑄𝑇)
14 eqid 2740 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
157, 3, 14llni2 39469 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
165, 11, 12, 13, 15syl31anc 1373 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (LLines‘𝐾))
171, 6, 7, 3, 8, 9dalem1 39616 . . . 4 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))
181dalem-clpjq 39594 . . . . . . . 8 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
191, 7, 3dalempjqeb 39602 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
20 eqid 2740 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
21 eqid 2740 . . . . . . . . . . . 12 (0.‘𝐾) = (0.‘𝐾)
2220, 6, 21op0le 39142 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) (𝑃 𝑄))
232, 19, 22syl2anc 583 . . . . . . . . . 10 (𝜑 → (0.‘𝐾) (𝑃 𝑄))
24 breq1 5169 . . . . . . . . . 10 (𝐶 = (0.‘𝐾) → (𝐶 (𝑃 𝑄) ↔ (0.‘𝐾) (𝑃 𝑄)))
2523, 24syl5ibrcom 247 . . . . . . . . 9 (𝜑 → (𝐶 = (0.‘𝐾) → 𝐶 (𝑃 𝑄)))
2625necon3bd 2960 . . . . . . . 8 (𝜑 → (¬ 𝐶 (𝑃 𝑄) → 𝐶 ≠ (0.‘𝐾)))
2718, 26mpd 15 . . . . . . 7 (𝜑𝐶 ≠ (0.‘𝐾))
28 eqid 2740 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
2920, 28, 21opltn0 39146 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
302, 4, 29syl2anc 583 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ≠ (0.‘𝐾)))
3127, 30mpbird 257 . . . . . 6 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝐶)
321dalemclpjs 39591 . . . . . . 7 (𝜑𝐶 (𝑃 𝑆))
331dalemclqjt 39592 . . . . . . 7 (𝜑𝐶 (𝑄 𝑇))
341dalemkelat 39581 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
351dalempea 39583 . . . . . . . . 9 (𝜑𝑃𝐴)
361dalemsea 39586 . . . . . . . . 9 (𝜑𝑆𝐴)
3720, 7, 3hlatjcl 39323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
385, 35, 36, 37syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
3920, 7, 3hlatjcl 39323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
405, 11, 12, 39syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
41 eqid 2740 . . . . . . . . 9 (meet‘𝐾) = (meet‘𝐾)
4220, 6, 41latlem12 18536 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4334, 4, 38, 40, 42syl13anc 1372 . . . . . . 7 (𝜑 → ((𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇)) ↔ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
4432, 33, 43mpbi2and 711 . . . . . 6 (𝜑𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
45 opposet 39137 . . . . . . . 8 (𝐾 ∈ OP → 𝐾 ∈ Poset)
462, 45syl 17 . . . . . . 7 (𝜑𝐾 ∈ Poset)
4720, 21op0cl 39140 . . . . . . . 8 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
482, 47syl 17 . . . . . . 7 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
4920, 41latmcl 18510 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5034, 38, 40, 49syl3anc 1371 . . . . . . 7 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))
5120, 6, 28pltletr 18413 . . . . . . 7 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5246, 48, 4, 50, 51syl13anc 1372 . . . . . 6 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝐶𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))) → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇))))
5331, 44, 52mp2and 698 . . . . 5 (𝜑 → (0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
5420, 28, 21opltn0 39146 . . . . . 6 ((𝐾 ∈ OP ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
552, 50, 54syl2anc 583 . . . . 5 (𝜑 → ((0.‘𝐾)(lt‘𝐾)((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ↔ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾)))
5653, 55mpbid 232 . . . 4 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))
5741, 21, 3, 142llnmat 39481 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑆) ≠ (𝑄 𝑇) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
585, 10, 16, 17, 56, 57syl32anc 1378 . . 3 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
5920, 6, 21, 3leat2 39250 . . 3 (((𝐾 ∈ OP ∧ 𝐶 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴) ∧ (𝐶 ≠ (0.‘𝐾) ∧ 𝐶 ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))) → 𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
602, 4, 58, 27, 44, 59syl32anc 1378 . 2 (𝜑𝐶 = ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)))
6160, 58eqeltrd 2844 1 (𝜑𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  OPcops 39128  Atomscatm 39219  HLchlt 39306  LLinesclln 39448  LPlanesclpl 39449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456
This theorem is referenced by:  dalem2  39618  dalem5  39624  dalem-cly  39628  dalem9  39629  dalem19  39639  dalem21  39651  dalem25  39655
  Copyright terms: Public domain W3C validator