![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephgeom | Structured version Visualization version GIF version |
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
alephgeom | ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleph0 10043 | . . 3 ⊢ (ℵ‘∅) = ω | |
2 | 0ss 4392 | . . . 4 ⊢ ∅ ⊆ 𝐴 | |
3 | 0elon 6407 | . . . . 5 ⊢ ∅ ∈ On | |
4 | alephord3 10055 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) |
6 | 2, 5 | mpbii 232 | . . 3 ⊢ (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴)) |
7 | 1, 6 | eqsstrrid 4027 | . 2 ⊢ (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴)) |
8 | peano1 7861 | . . . . . 6 ⊢ ∅ ∈ ω | |
9 | ordom 7848 | . . . . . . . 8 ⊢ Ord ω | |
10 | ord0 6406 | . . . . . . . 8 ⊢ Ord ∅ | |
11 | ordtri1 6386 | . . . . . . . 8 ⊢ ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)) | |
12 | 9, 10, 11 | mp2an 690 | . . . . . . 7 ⊢ (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω) |
13 | 12 | con2bii 357 | . . . . . 6 ⊢ (∅ ∈ ω ↔ ¬ ω ⊆ ∅) |
14 | 8, 13 | mpbi 229 | . . . . 5 ⊢ ¬ ω ⊆ ∅ |
15 | ndmfv 6913 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅) | |
16 | 15 | sseq2d 4010 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅)) |
17 | 14, 16 | mtbiri 326 | . . . 4 ⊢ (¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴)) |
18 | 17 | con4i 114 | . . 3 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ) |
19 | alephfnon 10042 | . . . 4 ⊢ ℵ Fn On | |
20 | 19 | fndmi 6642 | . . 3 ⊢ dom ℵ = On |
21 | 18, 20 | eleqtrdi 2842 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On) |
22 | 7, 21 | impbii 208 | 1 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2106 ⊆ wss 3944 ∅c0 4318 dom cdm 5669 Ord word 6352 Oncon0 6353 ‘cfv 6532 ωcom 7838 ℵcale 9913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-inf2 9618 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-oi 9487 df-har 9534 df-card 9916 df-aleph 9917 |
This theorem is referenced by: alephislim 10060 cardalephex 10067 isinfcard 10069 alephval3 10087 alephval2 10549 alephadd 10554 alephmul 10555 alephexp1 10556 alephsuc3 10557 alephexp2 10558 alephreg 10559 pwcfsdom 10560 cfpwsdom 10561 gchaleph 10648 gchaleph2 10649 |
Copyright terms: Public domain | W3C validator |