![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephgeom | Structured version Visualization version GIF version |
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
alephgeom | ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleph0 10135 | . . 3 ⊢ (ℵ‘∅) = ω | |
2 | 0ss 4423 | . . . 4 ⊢ ∅ ⊆ 𝐴 | |
3 | 0elon 6449 | . . . . 5 ⊢ ∅ ∈ On | |
4 | alephord3 10147 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) | |
5 | 3, 4 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) |
6 | 2, 5 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴)) |
7 | 1, 6 | eqsstrrid 4058 | . 2 ⊢ (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴)) |
8 | peano1 7927 | . . . . . 6 ⊢ ∅ ∈ ω | |
9 | ordom 7913 | . . . . . . . 8 ⊢ Ord ω | |
10 | ord0 6448 | . . . . . . . 8 ⊢ Ord ∅ | |
11 | ordtri1 6428 | . . . . . . . 8 ⊢ ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)) | |
12 | 9, 10, 11 | mp2an 691 | . . . . . . 7 ⊢ (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω) |
13 | 12 | con2bii 357 | . . . . . 6 ⊢ (∅ ∈ ω ↔ ¬ ω ⊆ ∅) |
14 | 8, 13 | mpbi 230 | . . . . 5 ⊢ ¬ ω ⊆ ∅ |
15 | ndmfv 6955 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅) | |
16 | 15 | sseq2d 4041 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅)) |
17 | 14, 16 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴)) |
18 | 17 | con4i 114 | . . 3 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ) |
19 | alephfnon 10134 | . . . 4 ⊢ ℵ Fn On | |
20 | 19 | fndmi 6683 | . . 3 ⊢ dom ℵ = On |
21 | 18, 20 | eleqtrdi 2854 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On) |
22 | 7, 21 | impbii 209 | 1 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 dom cdm 5700 Ord word 6394 Oncon0 6395 ‘cfv 6573 ωcom 7903 ℵcale 10005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-har 9626 df-card 10008 df-aleph 10009 |
This theorem is referenced by: alephislim 10152 cardalephex 10159 isinfcard 10161 alephval3 10179 alephval2 10641 alephadd 10646 alephmul 10647 alephexp1 10648 alephsuc3 10649 alephexp2 10650 alephreg 10651 pwcfsdom 10652 cfpwsdom 10653 gchaleph 10740 gchaleph2 10741 |
Copyright terms: Public domain | W3C validator |