| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephgeom | Structured version Visualization version GIF version | ||
| Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| alephgeom | ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph0 10080 | . . 3 ⊢ (ℵ‘∅) = ω | |
| 2 | 0ss 4375 | . . . 4 ⊢ ∅ ⊆ 𝐴 | |
| 3 | 0elon 6407 | . . . . 5 ⊢ ∅ ∈ On | |
| 4 | alephord3 10092 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) |
| 6 | 2, 5 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴)) |
| 7 | 1, 6 | eqsstrrid 3998 | . 2 ⊢ (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴)) |
| 8 | peano1 7884 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 9 | ordom 7871 | . . . . . . . 8 ⊢ Ord ω | |
| 10 | ord0 6406 | . . . . . . . 8 ⊢ Ord ∅ | |
| 11 | ordtri1 6385 | . . . . . . . 8 ⊢ ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . 7 ⊢ (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω) |
| 13 | 12 | con2bii 357 | . . . . . 6 ⊢ (∅ ∈ ω ↔ ¬ ω ⊆ ∅) |
| 14 | 8, 13 | mpbi 230 | . . . . 5 ⊢ ¬ ω ⊆ ∅ |
| 15 | ndmfv 6911 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅) | |
| 16 | 15 | sseq2d 3991 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅)) |
| 17 | 14, 16 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴)) |
| 18 | 17 | con4i 114 | . . 3 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ) |
| 19 | alephfnon 10079 | . . . 4 ⊢ ℵ Fn On | |
| 20 | 19 | fndmi 6642 | . . 3 ⊢ dom ℵ = On |
| 21 | 18, 20 | eleqtrdi 2844 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On) |
| 22 | 7, 21 | impbii 209 | 1 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 ⊆ wss 3926 ∅c0 4308 dom cdm 5654 Ord word 6351 Oncon0 6352 ‘cfv 6531 ωcom 7861 ℵcale 9950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-har 9571 df-card 9953 df-aleph 9954 |
| This theorem is referenced by: alephislim 10097 cardalephex 10104 isinfcard 10106 alephval3 10124 alephval2 10586 alephadd 10591 alephmul 10592 alephexp1 10593 alephsuc3 10594 alephexp2 10595 alephreg 10596 pwcfsdom 10597 cfpwsdom 10598 gchaleph 10685 gchaleph2 10686 |
| Copyright terms: Public domain | W3C validator |