MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephgeom Structured version   Visualization version   GIF version

Theorem alephgeom 10122
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephgeom (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))

Proof of Theorem alephgeom
StepHypRef Expression
1 aleph0 10106 . . 3 (ℵ‘∅) = ω
2 0ss 4400 . . . 4 ∅ ⊆ 𝐴
3 0elon 6438 . . . . 5 ∅ ∈ On
4 alephord3 10118 . . . . 5 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
53, 4mpan 690 . . . 4 (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
62, 5mpbii 233 . . 3 (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴))
71, 6eqsstrrid 4023 . 2 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
8 peano1 7910 . . . . . 6 ∅ ∈ ω
9 ordom 7897 . . . . . . . 8 Ord ω
10 ord0 6437 . . . . . . . 8 Ord ∅
11 ordtri1 6417 . . . . . . . 8 ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω))
129, 10, 11mp2an 692 . . . . . . 7 (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)
1312con2bii 357 . . . . . 6 (∅ ∈ ω ↔ ¬ ω ⊆ ∅)
148, 13mpbi 230 . . . . 5 ¬ ω ⊆ ∅
15 ndmfv 6941 . . . . . 6 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
1615sseq2d 4016 . . . . 5 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅))
1714, 16mtbiri 327 . . . 4 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴))
1817con4i 114 . . 3 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ)
19 alephfnon 10105 . . . 4 ℵ Fn On
2019fndmi 6672 . . 3 dom ℵ = On
2118, 20eleqtrdi 2851 . 2 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On)
227, 21impbii 209 1 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2108  wss 3951  c0 4333  dom cdm 5685  Ord word 6383  Oncon0 6384  cfv 6561  ωcom 7887  cale 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-har 9597  df-card 9979  df-aleph 9980
This theorem is referenced by:  alephislim  10123  cardalephex  10130  isinfcard  10132  alephval3  10150  alephval2  10612  alephadd  10617  alephmul  10618  alephexp1  10619  alephsuc3  10620  alephexp2  10621  alephreg  10622  pwcfsdom  10623  cfpwsdom  10624  gchaleph  10711  gchaleph2  10712
  Copyright terms: Public domain W3C validator