| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephgeom | Structured version Visualization version GIF version | ||
| Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| alephgeom | ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph0 9963 | . . 3 ⊢ (ℵ‘∅) = ω | |
| 2 | 0ss 4349 | . . . 4 ⊢ ∅ ⊆ 𝐴 | |
| 3 | 0elon 6367 | . . . . 5 ⊢ ∅ ∈ On | |
| 4 | alephord3 9975 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) |
| 6 | 2, 5 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴)) |
| 7 | 1, 6 | eqsstrrid 3969 | . 2 ⊢ (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴)) |
| 8 | peano1 7825 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 9 | ordom 7812 | . . . . . . . 8 ⊢ Ord ω | |
| 10 | ord0 6366 | . . . . . . . 8 ⊢ Ord ∅ | |
| 11 | ordtri1 6345 | . . . . . . . 8 ⊢ ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . 7 ⊢ (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω) |
| 13 | 12 | con2bii 357 | . . . . . 6 ⊢ (∅ ∈ ω ↔ ¬ ω ⊆ ∅) |
| 14 | 8, 13 | mpbi 230 | . . . . 5 ⊢ ¬ ω ⊆ ∅ |
| 15 | ndmfv 6860 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅) | |
| 16 | 15 | sseq2d 3962 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅)) |
| 17 | 14, 16 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴)) |
| 18 | 17 | con4i 114 | . . 3 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ) |
| 19 | alephfnon 9962 | . . . 4 ⊢ ℵ Fn On | |
| 20 | 19 | fndmi 6591 | . . 3 ⊢ dom ℵ = On |
| 21 | 18, 20 | eleqtrdi 2841 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On) |
| 22 | 7, 21 | impbii 209 | 1 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4282 dom cdm 5619 Ord word 6311 Oncon0 6312 ‘cfv 6487 ωcom 7802 ℵcale 9835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9402 df-har 9449 df-card 9838 df-aleph 9839 |
| This theorem is referenced by: alephislim 9980 cardalephex 9987 isinfcard 9989 alephval3 10007 alephval2 10469 alephadd 10474 alephmul 10475 alephexp1 10476 alephsuc3 10477 alephexp2 10478 alephreg 10479 pwcfsdom 10480 cfpwsdom 10481 gchaleph 10568 gchaleph2 10569 |
| Copyright terms: Public domain | W3C validator |