MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephgeom Structured version   Visualization version   GIF version

Theorem alephgeom 10096
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephgeom (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))

Proof of Theorem alephgeom
StepHypRef Expression
1 aleph0 10080 . . 3 (ℵ‘∅) = ω
2 0ss 4375 . . . 4 ∅ ⊆ 𝐴
3 0elon 6407 . . . . 5 ∅ ∈ On
4 alephord3 10092 . . . . 5 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
53, 4mpan 690 . . . 4 (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
62, 5mpbii 233 . . 3 (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴))
71, 6eqsstrrid 3998 . 2 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
8 peano1 7884 . . . . . 6 ∅ ∈ ω
9 ordom 7871 . . . . . . . 8 Ord ω
10 ord0 6406 . . . . . . . 8 Ord ∅
11 ordtri1 6385 . . . . . . . 8 ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω))
129, 10, 11mp2an 692 . . . . . . 7 (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)
1312con2bii 357 . . . . . 6 (∅ ∈ ω ↔ ¬ ω ⊆ ∅)
148, 13mpbi 230 . . . . 5 ¬ ω ⊆ ∅
15 ndmfv 6911 . . . . . 6 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
1615sseq2d 3991 . . . . 5 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅))
1714, 16mtbiri 327 . . . 4 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴))
1817con4i 114 . . 3 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ)
19 alephfnon 10079 . . . 4 ℵ Fn On
2019fndmi 6642 . . 3 dom ℵ = On
2118, 20eleqtrdi 2844 . 2 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On)
227, 21impbii 209 1 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2108  wss 3926  c0 4308  dom cdm 5654  Ord word 6351  Oncon0 6352  cfv 6531  ωcom 7861  cale 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-har 9571  df-card 9953  df-aleph 9954
This theorem is referenced by:  alephislim  10097  cardalephex  10104  isinfcard  10106  alephval3  10124  alephval2  10586  alephadd  10591  alephmul  10592  alephexp1  10593  alephsuc3  10594  alephexp2  10595  alephreg  10596  pwcfsdom  10597  cfpwsdom  10598  gchaleph  10685  gchaleph2  10686
  Copyright terms: Public domain W3C validator