| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephgeom | Structured version Visualization version GIF version | ||
| Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| alephgeom | ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph0 9979 | . . 3 ⊢ (ℵ‘∅) = ω | |
| 2 | 0ss 4353 | . . . 4 ⊢ ∅ ⊆ 𝐴 | |
| 3 | 0elon 6366 | . . . . 5 ⊢ ∅ ∈ On | |
| 4 | alephord3 9991 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) |
| 6 | 2, 5 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴)) |
| 7 | 1, 6 | eqsstrrid 3977 | . 2 ⊢ (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴)) |
| 8 | peano1 7829 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 9 | ordom 7816 | . . . . . . . 8 ⊢ Ord ω | |
| 10 | ord0 6365 | . . . . . . . 8 ⊢ Ord ∅ | |
| 11 | ordtri1 6344 | . . . . . . . 8 ⊢ ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . 7 ⊢ (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω) |
| 13 | 12 | con2bii 357 | . . . . . 6 ⊢ (∅ ∈ ω ↔ ¬ ω ⊆ ∅) |
| 14 | 8, 13 | mpbi 230 | . . . . 5 ⊢ ¬ ω ⊆ ∅ |
| 15 | ndmfv 6859 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅) | |
| 16 | 15 | sseq2d 3970 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅)) |
| 17 | 14, 16 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴)) |
| 18 | 17 | con4i 114 | . . 3 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ) |
| 19 | alephfnon 9978 | . . . 4 ⊢ ℵ Fn On | |
| 20 | 19 | fndmi 6590 | . . 3 ⊢ dom ℵ = On |
| 21 | 18, 20 | eleqtrdi 2838 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On) |
| 22 | 7, 21 | impbii 209 | 1 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 dom cdm 5623 Ord word 6310 Oncon0 6311 ‘cfv 6486 ωcom 7806 ℵcale 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-har 9468 df-card 9854 df-aleph 9855 |
| This theorem is referenced by: alephislim 9996 cardalephex 10003 isinfcard 10005 alephval3 10023 alephval2 10485 alephadd 10490 alephmul 10491 alephexp1 10492 alephsuc3 10493 alephexp2 10494 alephreg 10495 pwcfsdom 10496 cfpwsdom 10497 gchaleph 10584 gchaleph2 10585 |
| Copyright terms: Public domain | W3C validator |