MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephgeom Structured version   Visualization version   GIF version

Theorem alephgeom 9995
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephgeom (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))

Proof of Theorem alephgeom
StepHypRef Expression
1 aleph0 9979 . . 3 (ℵ‘∅) = ω
2 0ss 4353 . . . 4 ∅ ⊆ 𝐴
3 0elon 6366 . . . . 5 ∅ ∈ On
4 alephord3 9991 . . . . 5 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
53, 4mpan 690 . . . 4 (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
62, 5mpbii 233 . . 3 (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴))
71, 6eqsstrrid 3977 . 2 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
8 peano1 7829 . . . . . 6 ∅ ∈ ω
9 ordom 7816 . . . . . . . 8 Ord ω
10 ord0 6365 . . . . . . . 8 Ord ∅
11 ordtri1 6344 . . . . . . . 8 ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω))
129, 10, 11mp2an 692 . . . . . . 7 (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)
1312con2bii 357 . . . . . 6 (∅ ∈ ω ↔ ¬ ω ⊆ ∅)
148, 13mpbi 230 . . . . 5 ¬ ω ⊆ ∅
15 ndmfv 6859 . . . . . 6 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
1615sseq2d 3970 . . . . 5 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅))
1714, 16mtbiri 327 . . . 4 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴))
1817con4i 114 . . 3 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ)
19 alephfnon 9978 . . . 4 ℵ Fn On
2019fndmi 6590 . . 3 dom ℵ = On
2118, 20eleqtrdi 2838 . 2 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On)
227, 21impbii 209 1 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  wss 3905  c0 4286  dom cdm 5623  Ord word 6310  Oncon0 6311  cfv 6486  ωcom 7806  cale 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-har 9468  df-card 9854  df-aleph 9855
This theorem is referenced by:  alephislim  9996  cardalephex  10003  isinfcard  10005  alephval3  10023  alephval2  10485  alephadd  10490  alephmul  10491  alephexp1  10492  alephsuc3  10493  alephexp2  10494  alephreg  10495  pwcfsdom  10496  cfpwsdom  10497  gchaleph  10584  gchaleph2  10585
  Copyright terms: Public domain W3C validator