MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephgeom Structured version   Visualization version   GIF version

Theorem alephgeom 9661
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephgeom (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))

Proof of Theorem alephgeom
StepHypRef Expression
1 aleph0 9645 . . 3 (ℵ‘∅) = ω
2 0ss 4297 . . . 4 ∅ ⊆ 𝐴
3 0elon 6244 . . . . 5 ∅ ∈ On
4 alephord3 9657 . . . . 5 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
53, 4mpan 690 . . . 4 (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴)))
62, 5mpbii 236 . . 3 (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴))
71, 6eqsstrrid 3936 . 2 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
8 peano1 7645 . . . . . 6 ∅ ∈ ω
9 ordom 7632 . . . . . . . 8 Ord ω
10 ord0 6243 . . . . . . . 8 Ord ∅
11 ordtri1 6224 . . . . . . . 8 ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω))
129, 10, 11mp2an 692 . . . . . . 7 (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)
1312con2bii 361 . . . . . 6 (∅ ∈ ω ↔ ¬ ω ⊆ ∅)
148, 13mpbi 233 . . . . 5 ¬ ω ⊆ ∅
15 ndmfv 6725 . . . . . 6 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
1615sseq2d 3919 . . . . 5 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅))
1714, 16mtbiri 330 . . . 4 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴))
1817con4i 114 . . 3 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ)
19 alephfnon 9644 . . . 4 ℵ Fn On
2019fndmi 6460 . . 3 dom ℵ = On
2118, 20eleqtrdi 2841 . 2 (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On)
227, 21impbii 212 1 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wcel 2112  wss 3853  c0 4223  dom cdm 5536  Ord word 6190  Oncon0 6191  cfv 6358  ωcom 7622  cale 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-oi 9104  df-har 9151  df-card 9520  df-aleph 9521
This theorem is referenced by:  alephislim  9662  cardalephex  9669  isinfcard  9671  alephval3  9689  alephval2  10151  alephadd  10156  alephmul  10157  alephexp1  10158  alephsuc3  10159  alephexp2  10160  alephreg  10161  pwcfsdom  10162  cfpwsdom  10163  gchaleph  10250  gchaleph2  10251
  Copyright terms: Public domain W3C validator