![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephgeom | Structured version Visualization version GIF version |
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
alephgeom | ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleph0 9286 | . . 3 ⊢ (ℵ‘∅) = ω | |
2 | 0ss 4236 | . . . 4 ⊢ ∅ ⊆ 𝐴 | |
3 | 0elon 6082 | . . . . 5 ⊢ ∅ ∈ On | |
4 | alephord3 9298 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) | |
5 | 3, 4 | mpan 677 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (ℵ‘∅) ⊆ (ℵ‘𝐴))) |
6 | 2, 5 | mpbii 225 | . . 3 ⊢ (𝐴 ∈ On → (ℵ‘∅) ⊆ (ℵ‘𝐴)) |
7 | 1, 6 | syl5eqssr 3907 | . 2 ⊢ (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴)) |
8 | peano1 7416 | . . . . . 6 ⊢ ∅ ∈ ω | |
9 | ordom 7405 | . . . . . . . 8 ⊢ Ord ω | |
10 | ord0 6081 | . . . . . . . 8 ⊢ Ord ∅ | |
11 | ordtri1 6062 | . . . . . . . 8 ⊢ ((Ord ω ∧ Ord ∅) → (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω)) | |
12 | 9, 10, 11 | mp2an 679 | . . . . . . 7 ⊢ (ω ⊆ ∅ ↔ ¬ ∅ ∈ ω) |
13 | 12 | con2bii 350 | . . . . . 6 ⊢ (∅ ∈ ω ↔ ¬ ω ⊆ ∅) |
14 | 8, 13 | mpbi 222 | . . . . 5 ⊢ ¬ ω ⊆ ∅ |
15 | ndmfv 6529 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅) | |
16 | 15 | sseq2d 3890 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom ℵ → (ω ⊆ (ℵ‘𝐴) ↔ ω ⊆ ∅)) |
17 | 14, 16 | mtbiri 319 | . . . 4 ⊢ (¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ (ℵ‘𝐴)) |
18 | 17 | con4i 114 | . . 3 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ dom ℵ) |
19 | alephfnon 9285 | . . . 4 ⊢ ℵ Fn On | |
20 | fndm 6288 | . . . 4 ⊢ (ℵ Fn On → dom ℵ = On) | |
21 | 19, 20 | ax-mp 5 | . . 3 ⊢ dom ℵ = On |
22 | 18, 21 | syl6eleq 2877 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) → 𝐴 ∈ On) |
23 | 7, 22 | impbii 201 | 1 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ⊆ wss 3830 ∅c0 4179 dom cdm 5407 Ord word 6028 Oncon0 6029 Fn wfn 6183 ‘cfv 6188 ωcom 7396 ℵcale 9159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-oi 8769 df-har 8817 df-card 9162 df-aleph 9163 |
This theorem is referenced by: alephislim 9303 cardalephex 9310 isinfcard 9312 alephval3 9330 alephval2 9792 alephadd 9797 alephmul 9798 alephexp1 9799 alephsuc3 9800 alephexp2 9801 alephreg 9802 pwcfsdom 9803 cfpwsdom 9804 gchaleph 9891 gchaleph2 9892 |
Copyright terms: Public domain | W3C validator |