MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smo0 Structured version   Visualization version   GIF version

Theorem smo0 8304
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smo0 Smo ∅

Proof of Theorem smo0
StepHypRef Expression
1 ord0 6374 . . 3 Ord ∅
21iordsmo 8303 . 2 Smo ( I ↾ ∅)
3 res0 5943 . . 3 ( I ↾ ∅) = ∅
4 smoeq 8296 . . 3 (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅))
53, 4ax-mp 5 . 2 (Smo ( I ↾ ∅) ↔ Smo ∅)
62, 5mpbi 230 1 Smo ∅
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  c0 4292   I cid 5525  cres 5633  Smo wsmo 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-smo 8292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator