| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smo0 | Structured version Visualization version GIF version | ||
| Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
| Ref | Expression |
|---|---|
| smo0 | ⊢ Smo ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6361 | . . 3 ⊢ Ord ∅ | |
| 2 | 1 | iordsmo 8280 | . 2 ⊢ Smo ( I ↾ ∅) |
| 3 | res0 5934 | . . 3 ⊢ ( I ↾ ∅) = ∅ | |
| 4 | smoeq 8273 | . . 3 ⊢ (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Smo ( I ↾ ∅) ↔ Smo ∅) |
| 6 | 2, 5 | mpbi 230 | 1 ⊢ Smo ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4284 I cid 5513 ↾ cres 5621 Smo wsmo 8268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-smo 8269 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |