| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smo0 | Structured version Visualization version GIF version | ||
| Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
| Ref | Expression |
|---|---|
| smo0 | ⊢ Smo ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6411 | . . 3 ⊢ Ord ∅ | |
| 2 | 1 | iordsmo 8376 | . 2 ⊢ Smo ( I ↾ ∅) |
| 3 | res0 5975 | . . 3 ⊢ ( I ↾ ∅) = ∅ | |
| 4 | smoeq 8369 | . . 3 ⊢ (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Smo ( I ↾ ∅) ↔ Smo ∅) |
| 6 | 2, 5 | mpbi 230 | 1 ⊢ Smo ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4313 I cid 5552 ↾ cres 5661 Smo wsmo 8364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-smo 8365 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |