|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > smo0 | Structured version Visualization version GIF version | ||
| Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| smo0 | ⊢ Smo ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ord0 6437 | . . 3 ⊢ Ord ∅ | |
| 2 | 1 | iordsmo 8397 | . 2 ⊢ Smo ( I ↾ ∅) | 
| 3 | res0 6001 | . . 3 ⊢ ( I ↾ ∅) = ∅ | |
| 4 | smoeq 8390 | . . 3 ⊢ (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Smo ( I ↾ ∅) ↔ Smo ∅) | 
| 6 | 2, 5 | mpbi 230 | 1 ⊢ Smo ∅ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4333 I cid 5577 ↾ cres 5687 Smo wsmo 8385 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-smo 8386 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |