MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smo0 Structured version   Visualization version   GIF version

Theorem smo0 8278
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smo0 Smo ∅

Proof of Theorem smo0
StepHypRef Expression
1 ord0 6360 . . 3 Ord ∅
21iordsmo 8277 . 2 Smo ( I ↾ ∅)
3 res0 5931 . . 3 ( I ↾ ∅) = ∅
4 smoeq 8270 . . 3 (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅))
53, 4ax-mp 5 . 2 (Smo ( I ↾ ∅) ↔ Smo ∅)
62, 5mpbi 230 1 Smo ∅
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  c0 4280   I cid 5508  cres 5616  Smo wsmo 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-smo 8266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator