| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smo0 | Structured version Visualization version GIF version | ||
| Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
| Ref | Expression |
|---|---|
| smo0 | ⊢ Smo ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 6386 | . . 3 ⊢ Ord ∅ | |
| 2 | 1 | iordsmo 8326 | . 2 ⊢ Smo ( I ↾ ∅) |
| 3 | res0 5954 | . . 3 ⊢ ( I ↾ ∅) = ∅ | |
| 4 | smoeq 8319 | . . 3 ⊢ (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Smo ( I ↾ ∅) ↔ Smo ∅) |
| 6 | 2, 5 | mpbi 230 | 1 ⊢ Smo ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4296 I cid 5532 ↾ cres 5640 Smo wsmo 8314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-smo 8315 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |