| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordne0gt0 | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of [Schloeder] p. 2. Closely related to ord0eln0 6390. (Contributed by RP, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordne0gt0 | ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0eln0 6390 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 Ord word 6333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-tr 5217 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-ord 6337 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |