Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordne0gt0 Structured version   Visualization version   GIF version

Theorem ordne0gt0 42466
Description: Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of [Schloeder] p. 2. Closely related to ord0eln0 6409. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
ordne0gt0 ((Ord 𝐴𝐴 ≠ ∅) → ∅ ∈ 𝐴)

Proof of Theorem ordne0gt0
StepHypRef Expression
1 ord0eln0 6409 . 2 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
21biimpar 477 1 ((Ord 𝐴𝐴 ≠ ∅) → ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  wne 2932  c0 4314  Ord word 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator