Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordeldif1o Structured version   Visualization version   GIF version

Theorem ordeldif1o 41781
Description: Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
ordeldif1o (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵𝐴𝐵 ≠ ∅)))

Proof of Theorem ordeldif1o
StepHypRef Expression
1 df-1o 8448 . . . . 5 1o = suc ∅
21difeq2i 4115 . . . 4 (𝐴 ∖ 1o) = (𝐴 ∖ suc ∅)
32eleq2i 2824 . . 3 (𝐵 ∈ (𝐴 ∖ 1o) ↔ 𝐵 ∈ (𝐴 ∖ suc ∅))
4 eldif 3954 . . 3 (𝐵 ∈ (𝐴 ∖ suc ∅) ↔ (𝐵𝐴 ∧ ¬ 𝐵 ∈ suc ∅))
53, 4bitri 274 . 2 (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵𝐴 ∧ ¬ 𝐵 ∈ suc ∅))
6 0elon 6407 . . . . 5 ∅ ∈ On
7 ordelord 6375 . . . . 5 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
8 ordelsuc 7791 . . . . 5 ((∅ ∈ On ∧ Ord 𝐵) → (∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵))
96, 7, 8sylancr 587 . . . 4 ((Ord 𝐴𝐵𝐴) → (∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵))
10 ord0eln0 6408 . . . . 5 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
117, 10syl 17 . . . 4 ((Ord 𝐴𝐵𝐴) → (∅ ∈ 𝐵𝐵 ≠ ∅))
12 eloni 6363 . . . . . 6 (∅ ∈ On → Ord ∅)
13 ordsuci 7779 . . . . . 6 (Ord ∅ → Ord suc ∅)
146, 12, 13mp2b 10 . . . . 5 Ord suc ∅
15 ordtri1 6386 . . . . 5 ((Ord suc ∅ ∧ Ord 𝐵) → (suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅))
1614, 7, 15sylancr 587 . . . 4 ((Ord 𝐴𝐵𝐴) → (suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅))
179, 11, 163bitr3rd 309 . . 3 ((Ord 𝐴𝐵𝐴) → (¬ 𝐵 ∈ suc ∅ ↔ 𝐵 ≠ ∅))
1817pm5.32da 579 . 2 (Ord 𝐴 → ((𝐵𝐴 ∧ ¬ 𝐵 ∈ suc ∅) ↔ (𝐵𝐴𝐵 ≠ ∅)))
195, 18bitrid 282 1 (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵𝐴𝐵 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wne 2939  cdif 3941  wss 3944  c0 4318  Ord word 6352  Oncon0 6353  suc csuc 6355  1oc1o 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6356  df-on 6357  df-suc 6359  df-1o 8448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator