Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordeldif1o Structured version   Visualization version   GIF version

Theorem ordeldif1o 41995
Description: Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
ordeldif1o (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵𝐴𝐵 ≠ ∅)))

Proof of Theorem ordeldif1o
StepHypRef Expression
1 df-1o 8462 . . . . 5 1o = suc ∅
21difeq2i 4118 . . . 4 (𝐴 ∖ 1o) = (𝐴 ∖ suc ∅)
32eleq2i 2825 . . 3 (𝐵 ∈ (𝐴 ∖ 1o) ↔ 𝐵 ∈ (𝐴 ∖ suc ∅))
4 eldif 3957 . . 3 (𝐵 ∈ (𝐴 ∖ suc ∅) ↔ (𝐵𝐴 ∧ ¬ 𝐵 ∈ suc ∅))
53, 4bitri 274 . 2 (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵𝐴 ∧ ¬ 𝐵 ∈ suc ∅))
6 0elon 6415 . . . . 5 ∅ ∈ On
7 ordelord 6383 . . . . 5 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
8 ordelsuc 7804 . . . . 5 ((∅ ∈ On ∧ Ord 𝐵) → (∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵))
96, 7, 8sylancr 587 . . . 4 ((Ord 𝐴𝐵𝐴) → (∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵))
10 ord0eln0 6416 . . . . 5 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
117, 10syl 17 . . . 4 ((Ord 𝐴𝐵𝐴) → (∅ ∈ 𝐵𝐵 ≠ ∅))
12 eloni 6371 . . . . . 6 (∅ ∈ On → Ord ∅)
13 ordsuci 7792 . . . . . 6 (Ord ∅ → Ord suc ∅)
146, 12, 13mp2b 10 . . . . 5 Ord suc ∅
15 ordtri1 6394 . . . . 5 ((Ord suc ∅ ∧ Ord 𝐵) → (suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅))
1614, 7, 15sylancr 587 . . . 4 ((Ord 𝐴𝐵𝐴) → (suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅))
179, 11, 163bitr3rd 309 . . 3 ((Ord 𝐴𝐵𝐴) → (¬ 𝐵 ∈ suc ∅ ↔ 𝐵 ≠ ∅))
1817pm5.32da 579 . 2 (Ord 𝐴 → ((𝐵𝐴 ∧ ¬ 𝐵 ∈ suc ∅) ↔ (𝐵𝐴𝐵 ≠ ∅)))
195, 18bitrid 282 1 (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵𝐴𝐵 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wne 2940  cdif 3944  wss 3947  c0 4321  Ord word 6360  Oncon0 6361  suc csuc 6363  1oc1o 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367  df-1o 8462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator