![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordeldif1o | Structured version Visualization version GIF version |
Description: Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025.) |
Ref | Expression |
---|---|
ordeldif1o | ⊢ (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8462 | . . . . 5 ⊢ 1o = suc ∅ | |
2 | 1 | difeq2i 4118 | . . . 4 ⊢ (𝐴 ∖ 1o) = (𝐴 ∖ suc ∅) |
3 | 2 | eleq2i 2825 | . . 3 ⊢ (𝐵 ∈ (𝐴 ∖ 1o) ↔ 𝐵 ∈ (𝐴 ∖ suc ∅)) |
4 | eldif 3957 | . . 3 ⊢ (𝐵 ∈ (𝐴 ∖ suc ∅) ↔ (𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ suc ∅)) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ suc ∅)) |
6 | 0elon 6415 | . . . . 5 ⊢ ∅ ∈ On | |
7 | ordelord 6383 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
8 | ordelsuc 7804 | . . . . 5 ⊢ ((∅ ∈ On ∧ Ord 𝐵) → (∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵)) | |
9 | 6, 7, 8 | sylancr 587 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (∅ ∈ 𝐵 ↔ suc ∅ ⊆ 𝐵)) |
10 | ord0eln0 6416 | . . . . 5 ⊢ (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) | |
11 | 7, 10 | syl 17 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
12 | eloni 6371 | . . . . . 6 ⊢ (∅ ∈ On → Ord ∅) | |
13 | ordsuci 7792 | . . . . . 6 ⊢ (Ord ∅ → Ord suc ∅) | |
14 | 6, 12, 13 | mp2b 10 | . . . . 5 ⊢ Ord suc ∅ |
15 | ordtri1 6394 | . . . . 5 ⊢ ((Ord suc ∅ ∧ Ord 𝐵) → (suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅)) | |
16 | 14, 7, 15 | sylancr 587 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (suc ∅ ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc ∅)) |
17 | 9, 11, 16 | 3bitr3rd 309 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (¬ 𝐵 ∈ suc ∅ ↔ 𝐵 ≠ ∅)) |
18 | 17 | pm5.32da 579 | . 2 ⊢ (Ord 𝐴 → ((𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ suc ∅) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅))) |
19 | 5, 18 | bitrid 282 | 1 ⊢ (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4321 Ord word 6360 Oncon0 6361 suc csuc 6363 1oc1o 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-suc 6367 df-1o 8462 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |