MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllvec Structured version   Visualization version   GIF version

Theorem phllvec 21181
Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
phllvec (π‘Š ∈ PreHil β†’ π‘Š ∈ LVec)

Proof of Theorem phllvec
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
2 eqid 2732 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
3 eqid 2732 . . 3 (Β·π‘–β€˜π‘Š) = (Β·π‘–β€˜π‘Š)
4 eqid 2732 . . 3 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
5 eqid 2732 . . 3 (*π‘Ÿβ€˜(Scalarβ€˜π‘Š)) = (*π‘Ÿβ€˜(Scalarβ€˜π‘Š))
6 eqid 2732 . . 3 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
71, 2, 3, 4, 5, 6isphl 21180 . 2 (π‘Š ∈ PreHil ↔ (π‘Š ∈ LVec ∧ (Scalarβ€˜π‘Š) ∈ *-Ring ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)((𝑦 ∈ (Baseβ€˜π‘Š) ↦ (𝑦(Β·π‘–β€˜π‘Š)π‘₯)) ∈ (π‘Š LMHom (ringLModβ€˜(Scalarβ€˜π‘Š))) ∧ ((π‘₯(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)) β†’ π‘₯ = (0gβ€˜π‘Š)) ∧ βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)((*π‘Ÿβ€˜(Scalarβ€˜π‘Š))β€˜(π‘₯(Β·π‘–β€˜π‘Š)𝑦)) = (𝑦(Β·π‘–β€˜π‘Š)π‘₯))))
87simp1bi 1145 1 (π‘Š ∈ PreHil β†’ π‘Š ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  *π‘Ÿcstv 17198  Scalarcsca 17199  Β·π‘–cip 17201  0gc0g 17384  *-Ringcsr 20451   LMHom clmhm 20629  LVecclvec 20712  ringLModcrglmod 20781  PreHilcphl 21176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-iota 6495  df-fv 6551  df-ov 7411  df-phl 21178
This theorem is referenced by:  phllmod  21182  phlssphl  21211  obsne0  21279  obslbs  21284  cphlvec  24691  phclm  24748  ipcau2  24750  tcphcph  24753
  Copyright terms: Public domain W3C validator