| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllvec | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllvec | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 4 | eqid 2731 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | eqid 2731 | . . 3 ⊢ (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊)) | |
| 6 | eqid 2731 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 7 | 1, 2, 3, 4, 5, 6 | isphl 21563 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ (Scalar‘𝑊) ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 *𝑟cstv 17160 Scalarcsca 17161 ·𝑖cip 17163 0gc0g 17340 *-Ringcsr 20751 LMHom clmhm 20951 LVecclvec 21034 ringLModcrglmod 21104 PreHilcphl 21559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-iota 6437 df-fv 6489 df-ov 7349 df-phl 21561 |
| This theorem is referenced by: phllmod 21565 phlssphl 21594 obsne0 21660 obslbs 21665 cphlvec 25100 phclm 25157 ipcau2 25159 tcphcph 25162 |
| Copyright terms: Public domain | W3C validator |