Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phllvec | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllvec | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2738 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2738 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2738 | . . 3 ⊢ (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊)) | |
6 | eqid 2738 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 20833 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ (Scalar‘𝑊) ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
8 | 7 | simp1bi 1144 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 *𝑟cstv 16964 Scalarcsca 16965 ·𝑖cip 16967 0gc0g 17150 *-Ringcsr 20104 LMHom clmhm 20281 LVecclvec 20364 ringLModcrglmod 20431 PreHilcphl 20829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-iota 6391 df-fv 6441 df-ov 7278 df-phl 20831 |
This theorem is referenced by: phllmod 20835 phlssphl 20864 obsne0 20932 obslbs 20937 cphlvec 24339 phclm 24396 ipcau2 24398 tcphcph 24401 |
Copyright terms: Public domain | W3C validator |