![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllvec | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllvec | β’ (π β PreHil β π β LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2732 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
3 | eqid 2732 | . . 3 β’ (Β·πβπ) = (Β·πβπ) | |
4 | eqid 2732 | . . 3 β’ (0gβπ) = (0gβπ) | |
5 | eqid 2732 | . . 3 β’ (*πβ(Scalarβπ)) = (*πβ(Scalarβπ)) | |
6 | eqid 2732 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 21180 | . 2 β’ (π β PreHil β (π β LVec β§ (Scalarβπ) β *-Ring β§ βπ₯ β (Baseβπ)((π¦ β (Baseβπ) β¦ (π¦(Β·πβπ)π₯)) β (π LMHom (ringLModβ(Scalarβπ))) β§ ((π₯(Β·πβπ)π₯) = (0gβ(Scalarβπ)) β π₯ = (0gβπ)) β§ βπ¦ β (Baseβπ)((*πβ(Scalarβπ))β(π₯(Β·πβπ)π¦)) = (π¦(Β·πβπ)π₯)))) |
8 | 7 | simp1bi 1145 | 1 β’ (π β PreHil β π β LVec) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 Basecbs 17143 *πcstv 17198 Scalarcsca 17199 Β·πcip 17201 0gc0g 17384 *-Ringcsr 20451 LMHom clmhm 20629 LVecclvec 20712 ringLModcrglmod 20781 PreHilcphl 21176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-iota 6495 df-fv 6551 df-ov 7411 df-phl 21178 |
This theorem is referenced by: phllmod 21182 phlssphl 21211 obsne0 21279 obslbs 21284 cphlvec 24691 phclm 24748 ipcau2 24750 tcphcph 24753 |
Copyright terms: Public domain | W3C validator |