MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllvec Structured version   Visualization version   GIF version

Theorem phllvec 20318
Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
phllvec (𝑊 ∈ PreHil → 𝑊 ∈ LVec)

Proof of Theorem phllvec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2798 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2798 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2798 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2798 . . 3 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
6 eqid 2798 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isphl 20317 . 2 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ (Scalar‘𝑊) ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))))
87simp1bi 1142 1 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cmpt 5110  cfv 6324  (class class class)co 7135  Basecbs 16475  *𝑟cstv 16559  Scalarcsca 16560  ·𝑖cip 16562  0gc0g 16705  *-Ringcsr 19608   LMHom clmhm 19784  LVecclvec 19867  ringLModcrglmod 19934  PreHilcphl 20313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-iota 6283  df-fv 6332  df-ov 7138  df-phl 20315
This theorem is referenced by:  phllmod  20319  phlssphl  20348  obsne0  20414  obslbs  20419  cphlvec  23780  phclm  23836  ipcau2  23838  tcphcph  23841
  Copyright terms: Public domain W3C validator