![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllvec | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllvec | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2825 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | eqid 2825 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2825 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2825 | . . 3 ⊢ (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊)) | |
6 | eqid 2825 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 20342 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ (Scalar‘𝑊) ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
8 | 7 | simp1bi 1179 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ↦ cmpt 4954 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 *𝑟cstv 16314 Scalarcsca 16315 ·𝑖cip 16317 0gc0g 16460 *-Ringcsr 19207 LMHom clmhm 19385 LVecclvec 19468 ringLModcrglmod 19537 PreHilcphl 20338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-nul 5015 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-iota 6090 df-fv 6135 df-ov 6913 df-phl 20340 |
This theorem is referenced by: phllmod 20344 phlssphl 20373 obsne0 20439 obslbs 20444 cphlvec 23351 phclm 23407 ipcau2 23409 tcphcph 23412 |
Copyright terms: Public domain | W3C validator |