MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllvec Structured version   Visualization version   GIF version

Theorem phllvec 20746
Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
phllvec (𝑊 ∈ PreHil → 𝑊 ∈ LVec)

Proof of Theorem phllvec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2738 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2738 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2738 . . 3 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
6 eqid 2738 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isphl 20745 . 2 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ (Scalar‘𝑊) ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))))
87simp1bi 1143 1 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  *𝑟cstv 16890  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  *-Ringcsr 20019   LMHom clmhm 20196  LVecclvec 20279  ringLModcrglmod 20346  PreHilcphl 20741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-iota 6376  df-fv 6426  df-ov 7258  df-phl 20743
This theorem is referenced by:  phllmod  20747  phlssphl  20776  obsne0  20842  obslbs  20847  cphlvec  24244  phclm  24301  ipcau2  24303  tcphcph  24306
  Copyright terms: Public domain W3C validator