MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllvec Structured version   Visualization version   GIF version

Theorem phllvec 21564
Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
phllvec (𝑊 ∈ PreHil → 𝑊 ∈ LVec)

Proof of Theorem phllvec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2731 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2731 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2731 . . 3 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
6 eqid 2731 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isphl 21563 . 2 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ (Scalar‘𝑊) ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))))
87simp1bi 1145 1 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cmpt 5172  cfv 6481  (class class class)co 7346  Basecbs 17117  *𝑟cstv 17160  Scalarcsca 17161  ·𝑖cip 17163  0gc0g 17340  *-Ringcsr 20751   LMHom clmhm 20951  LVecclvec 21034  ringLModcrglmod 21104  PreHilcphl 21559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-iota 6437  df-fv 6489  df-ov 7349  df-phl 21561
This theorem is referenced by:  phllmod  21565  phlssphl  21594  obsne0  21660  obslbs  21665  cphlvec  25100  phclm  25157  ipcau2  25159  tcphcph  25162
  Copyright terms: Public domain W3C validator