| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllvec | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllvec | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊)) | |
| 6 | eqid 2729 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 7 | 1, 2, 3, 4, 5, 6 | isphl 21553 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ (Scalar‘𝑊) ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 *𝑟cstv 17181 Scalarcsca 17182 ·𝑖cip 17184 0gc0g 17361 *-Ringcsr 20741 LMHom clmhm 20941 LVecclvec 21024 ringLModcrglmod 21094 PreHilcphl 21549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-iota 6442 df-fv 6494 df-ov 7356 df-phl 21551 |
| This theorem is referenced by: phllmod 21555 phlssphl 21584 obsne0 21650 obslbs 21655 cphlvec 25091 phclm 25148 ipcau2 25150 tcphcph 25153 |
| Copyright terms: Public domain | W3C validator |