MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphlvec Structured version   Visualization version   GIF version

Theorem cphlvec 23927
Description: A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphlvec (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)

Proof of Theorem cphlvec
StepHypRef Expression
1 cphphl 23923 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 phllvec 20445 . 2 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  LVecclvec 19993  PreHilcphl 20440  ℂPreHilccph 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-xp 5531  df-cnv 5533  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fv 6347  df-ov 7173  df-phl 20442  df-cph 23920
This theorem is referenced by:  cphnvc  23928  cphsubrg  23932  cphreccl  23933  cphqss  23940  hlprlem  24119  ishl2  24122
  Copyright terms: Public domain W3C validator