MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphlvec Structured version   Visualization version   GIF version

Theorem cphlvec 25091
Description: A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphlvec (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)

Proof of Theorem cphlvec
StepHypRef Expression
1 cphphl 25087 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 phllvec 21554 . 2 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  LVecclvec 21024  PreHilcphl 21549  ℂPreHilccph 25082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fv 6494  df-ov 7356  df-phl 21551  df-cph 25084
This theorem is referenced by:  cphnvc  25092  cphsubrg  25096  cphreccl  25097  cphqss  25104  hlprlem  25283  ishl2  25286
  Copyright terms: Public domain W3C validator