Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphlvec | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
cphlvec | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphphl 24335 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
2 | phllvec 20834 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 LVecclvec 20364 PreHilcphl 20829 ℂPreHilccph 24330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 df-ov 7278 df-phl 20831 df-cph 24332 |
This theorem is referenced by: cphnvc 24340 cphsubrg 24344 cphreccl 24345 cphqss 24352 hlprlem 24531 ishl2 24534 |
Copyright terms: Public domain | W3C validator |