Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphlvec | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
cphlvec | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphphl 23923 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
2 | phllvec 20445 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 LVecclvec 19993 PreHilcphl 20440 ℂPreHilccph 23918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-nul 5174 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fv 6347 df-ov 7173 df-phl 20442 df-cph 23920 |
This theorem is referenced by: cphnvc 23928 cphsubrg 23932 cphreccl 23933 cphqss 23940 hlprlem 24119 ishl2 24122 |
Copyright terms: Public domain | W3C validator |