MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphlvec Structured version   Visualization version   GIF version

Theorem cphlvec 25100
Description: A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphlvec (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)

Proof of Theorem cphlvec
StepHypRef Expression
1 cphphl 25096 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 phllvec 21564 . 2 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  LVecclvec 21034  PreHilcphl 21559  ℂPreHilccph 25091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fv 6489  df-ov 7349  df-phl 21561  df-cph 25093
This theorem is referenced by:  cphnvc  25101  cphsubrg  25105  cphreccl  25106  cphqss  25113  hlprlem  25292  ishl2  25295
  Copyright terms: Public domain W3C validator