MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlssphl Structured version   Visualization version   GIF version

Theorem phlssphl 20864
Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
phlssphl.x 𝑋 = (𝑊s 𝑈)
phlssphl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
phlssphl ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)

Proof of Theorem phlssphl
Dummy variables 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘𝑋) = (Base‘𝑋))
2 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g𝑋) = (+g𝑋))
3 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ( ·𝑠𝑋) = ( ·𝑠𝑋))
4 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑋))
5 phllmod 20835 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
6 phlssphl.x . . . . 5 𝑋 = (𝑊s 𝑈)
7 eqid 2738 . . . . 5 (0g𝑊) = (0g𝑊)
8 eqid 2738 . . . . 5 (0g𝑋) = (0g𝑋)
9 phlssphl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
106, 7, 8, 9lss0v 20278 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
115, 10sylan 580 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
1211eqcomd 2744 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑊) = (0g𝑋))
13 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑋))
14 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
15 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑋)))
16 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑋)))
17 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑋)))
18 eqidd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋)))
19 phllvec 20834 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
206, 9lsslvec 20369 . . 3 ((𝑊 ∈ LVec ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
2119, 20sylan 580 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
22 eqid 2738 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
236, 22resssca 17053 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
2423eqcomd 2744 . . . 4 (𝑈𝑆 → (Scalar‘𝑋) = (Scalar‘𝑊))
2524adantl 482 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑊))
2622phlsrng 20836 . . . 4 (𝑊 ∈ PreHil → (Scalar‘𝑊) ∈ *-Ring)
2726adantr 481 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ *-Ring)
2825, 27eqeltrd 2839 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ *-Ring)
29 simpl 483 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ PreHil)
30 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
316, 30ressbasss 16950 . . . . . 6 (Base‘𝑋) ⊆ (Base‘𝑊)
3231sseli 3917 . . . . 5 (𝑥 ∈ (Base‘𝑋) → 𝑥 ∈ (Base‘𝑊))
3331sseli 3917 . . . . 5 (𝑦 ∈ (Base‘𝑋) → 𝑦 ∈ (Base‘𝑊))
34 eqid 2738 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
35 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3622, 34, 30, 35ipcl 20838 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3729, 32, 33, 36syl3an 1159 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3824fveq2d 6778 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3938eleq2d 2824 . . . . . 6 (𝑈𝑆 → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4039adantl 482 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
41403ad2ant1 1132 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4237, 41mpbird 256 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))
43 eqid 2738 . . . . . . . 8 (·𝑖𝑋) = (·𝑖𝑋)
446, 34, 43ssipeq 20861 . . . . . . 7 (𝑈𝑆 → (·𝑖𝑋) = (·𝑖𝑊))
4544oveqd 7292 . . . . . 6 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑦) = (𝑥(·𝑖𝑊)𝑦))
4645eleq1d 2823 . . . . 5 (𝑈𝑆 → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4746adantl 482 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
48473ad2ant1 1132 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4942, 48mpbird 256 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)))
50293ad2ant1 1132 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ PreHil)
515adantr 481 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
52513ad2ant1 1132 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
5325fveq2d 6778 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
5453eleq2d 2824 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑞 ∈ (Base‘(Scalar‘𝑋)) ↔ 𝑞 ∈ (Base‘(Scalar‘𝑊))))
5554biimpa 477 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
56553adant3 1131 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
57323ad2ant1 1132 . . . . . . 7 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑥 ∈ (Base‘𝑊))
58573ad2ant3 1134 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘𝑊))
59 eqid 2738 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6030, 22, 59, 35lmodvscl 20140 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
6152, 56, 58, 60syl3anc 1370 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
62333ad2ant2 1133 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑦 ∈ (Base‘𝑊))
63623ad2ant3 1134 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
6431sseli 3917 . . . . . . 7 (𝑧 ∈ (Base‘𝑋) → 𝑧 ∈ (Base‘𝑊))
65643ad2ant3 1134 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑧 ∈ (Base‘𝑊))
66653ad2ant3 1134 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑧 ∈ (Base‘𝑊))
67 eqid 2738 . . . . . 6 (+g𝑊) = (+g𝑊)
68 eqid 2738 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
6922, 34, 30, 67, 68ipdir 20844 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7050, 61, 63, 66, 69syl13anc 1371 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
71 eqid 2738 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7222, 34, 30, 35, 59, 71ipass 20850 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7350, 56, 58, 66, 72syl13anc 1371 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7473oveq1d 7290 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7570, 74eqtrd 2778 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
766, 67ressplusg 17000 . . . . . . . . 9 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
7776eqcomd 2744 . . . . . . . 8 (𝑈𝑆 → (+g𝑋) = (+g𝑊))
786, 59ressvsca 17054 . . . . . . . . . 10 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7978eqcomd 2744 . . . . . . . . 9 (𝑈𝑆 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
8079oveqd 7292 . . . . . . . 8 (𝑈𝑆 → (𝑞( ·𝑠𝑋)𝑥) = (𝑞( ·𝑠𝑊)𝑥))
81 eqidd 2739 . . . . . . . 8 (𝑈𝑆𝑦 = 𝑦)
8277, 80, 81oveq123d 7296 . . . . . . 7 (𝑈𝑆 → ((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦) = ((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦))
83 eqidd 2739 . . . . . . 7 (𝑈𝑆𝑧 = 𝑧)
8444, 82, 83oveq123d 7296 . . . . . 6 (𝑈𝑆 → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧))
8524fveq2d 6778 . . . . . . 7 (𝑈𝑆 → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑊)))
8624fveq2d 6778 . . . . . . . 8 (𝑈𝑆 → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑊)))
87 eqidd 2739 . . . . . . . 8 (𝑈𝑆𝑞 = 𝑞)
8844oveqd 7292 . . . . . . . 8 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑧) = (𝑥(·𝑖𝑊)𝑧))
8986, 87, 88oveq123d 7296 . . . . . . 7 (𝑈𝑆 → (𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
9044oveqd 7292 . . . . . . 7 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑧) = (𝑦(·𝑖𝑊)𝑧))
9185, 89, 90oveq123d 7296 . . . . . 6 (𝑈𝑆 → ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
9284, 91eqeq12d 2754 . . . . 5 (𝑈𝑆 → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9392adantl 482 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
94933ad2ant1 1132 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9575, 94mpbird 256 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)))
9644adantl 482 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑊))
9796oveqdr 7303 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑥) = (𝑥(·𝑖𝑊)𝑥))
9824fveq2d 6778 . . . . . . 7 (𝑈𝑆 → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
9998adantl 482 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10099adantr 481 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10197, 100eqeq12d 2754 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
102 eqid 2738 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10322, 34, 30, 102, 7ipeq0 20843 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
10429, 32, 103syl2an 596 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
105104biimpd 228 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)))
106101, 105sylbid 239 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) → 𝑥 = (0g𝑊)))
1071063impia 1116 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ (𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋))) → 𝑥 = (0g𝑊))
10824fveq2d 6778 . . . . . . 7 (𝑈𝑆 → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑊)))
109108fveq1d 6776 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
110109adantl 482 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
1111103ad2ant1 1132 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
112 eqid 2738 . . . . . 6 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
11322, 34, 30, 112ipcj 20839 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11429, 32, 33, 113syl3an 1159 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
115111, 114eqtrd 2778 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11645fveq2d 6778 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)))
11744oveqd 7292 . . . . . 6 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑥) = (𝑦(·𝑖𝑊)𝑥))
118116, 117eqeq12d 2754 . . . . 5 (𝑈𝑆 → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
119118adantl 482 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
1201193ad2ant1 1132 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
121115, 120mpbird 256 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥))
1221, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 21, 28, 49, 95, 107, 121isphld 20859 1 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  +gcplusg 16962  .rcmulr 16963  *𝑟cstv 16964  Scalarcsca 16965   ·𝑠 cvsca 16966  ·𝑖cip 16967  0gc0g 17150  *-Ringcsr 20104  LModclmod 20123  LSubSpclss 20193  LVecclvec 20364  PreHilcphl 20829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lmhm 20284  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-phl 20831
This theorem is referenced by:  cphsscph  24415
  Copyright terms: Public domain W3C validator