Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (Base‘𝑋) = (Base‘𝑋)) |
2 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (+g‘𝑋) = (+g‘𝑋)) |
3 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (
·𝑠 ‘𝑋) = ( ·𝑠
‘𝑋)) |
4 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(·𝑖‘𝑋) =
(·𝑖‘𝑋)) |
5 | | phllmod 20835 |
. . . 4
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
6 | | phlssphl.x |
. . . . 5
⊢ 𝑋 = (𝑊 ↾s 𝑈) |
7 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
8 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑋) = (0g‘𝑋) |
9 | | phlssphl.s |
. . . . 5
⊢ 𝑆 = (LSubSp‘𝑊) |
10 | 6, 7, 8, 9 | lss0v 20278 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (0g‘𝑋) = (0g‘𝑊)) |
11 | 5, 10 | sylan 580 |
. . 3
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (0g‘𝑋) = (0g‘𝑊)) |
12 | 11 | eqcomd 2744 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (0g‘𝑊) = (0g‘𝑋)) |
13 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) = (Scalar‘𝑋)) |
14 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (Base‘(Scalar‘𝑋)) =
(Base‘(Scalar‘𝑋))) |
15 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(+g‘(Scalar‘𝑋)) =
(+g‘(Scalar‘𝑋))) |
16 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(.r‘(Scalar‘𝑋)) =
(.r‘(Scalar‘𝑋))) |
17 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(*𝑟‘(Scalar‘𝑋)) =
(*𝑟‘(Scalar‘𝑋))) |
18 | | eqidd 2739 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(0g‘(Scalar‘𝑋)) =
(0g‘(Scalar‘𝑋))) |
19 | | phllvec 20834 |
. . 3
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
20 | 6, 9 | lsslvec 20369 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LVec) |
21 | 19, 20 | sylan 580 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LVec) |
22 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
23 | 6, 22 | resssca 17053 |
. . . . 5
⊢ (𝑈 ∈ 𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋)) |
24 | 23 | eqcomd 2744 |
. . . 4
⊢ (𝑈 ∈ 𝑆 → (Scalar‘𝑋) = (Scalar‘𝑊)) |
25 | 24 | adantl 482 |
. . 3
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) = (Scalar‘𝑊)) |
26 | 22 | phlsrng 20836 |
. . . 4
⊢ (𝑊 ∈ PreHil →
(Scalar‘𝑊) ∈
*-Ring) |
27 | 26 | adantr 481 |
. . 3
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) ∈ *-Ring) |
28 | 25, 27 | eqeltrd 2839 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) ∈ *-Ring) |
29 | | simpl 483 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ PreHil) |
30 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
31 | 6, 30 | ressbasss 16950 |
. . . . . 6
⊢
(Base‘𝑋)
⊆ (Base‘𝑊) |
32 | 31 | sseli 3917 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝑋) → 𝑥 ∈ (Base‘𝑊)) |
33 | 31 | sseli 3917 |
. . . . 5
⊢ (𝑦 ∈ (Base‘𝑋) → 𝑦 ∈ (Base‘𝑊)) |
34 | | eqid 2738 |
. . . . . 6
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
35 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
36 | 22, 34, 30, 35 | ipcl 20838 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))) |
37 | 29, 32, 33, 36 | syl3an 1159 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))) |
38 | 24 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 → (Base‘(Scalar‘𝑋)) =
(Base‘(Scalar‘𝑊))) |
39 | 38 | eleq2d 2824 |
. . . . . 6
⊢ (𝑈 ∈ 𝑆 → ((𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))) |
40 | 39 | adantl 482 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))) |
41 | 40 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))) |
42 | 37, 41 | mpbird 256 |
. . 3
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))) |
43 | | eqid 2738 |
. . . . . . . 8
⊢
(·𝑖‘𝑋) =
(·𝑖‘𝑋) |
44 | 6, 34, 43 | ssipeq 20861 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 →
(·𝑖‘𝑋) =
(·𝑖‘𝑊)) |
45 | 44 | oveqd 7292 |
. . . . . 6
⊢ (𝑈 ∈ 𝑆 → (𝑥(·𝑖‘𝑋)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
46 | 45 | eleq1d 2823 |
. . . . 5
⊢ (𝑈 ∈ 𝑆 → ((𝑥(·𝑖‘𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))) |
47 | 46 | adantl 482 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((𝑥(·𝑖‘𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))) |
48 | 47 | 3ad2ant1 1132 |
. . 3
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖‘𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))) |
49 | 42, 48 | mpbird 256 |
. 2
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖‘𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋))) |
50 | 29 | 3ad2ant1 1132 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ PreHil) |
51 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) |
52 | 51 | 3ad2ant1 1132 |
. . . . . 6
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod) |
53 | 25 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (Base‘(Scalar‘𝑋)) =
(Base‘(Scalar‘𝑊))) |
54 | 53 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑞 ∈ (Base‘(Scalar‘𝑋)) ↔ 𝑞 ∈ (Base‘(Scalar‘𝑊)))) |
55 | 54 | biimpa 477 |
. . . . . . 7
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊))) |
56 | 55 | 3adant3 1131 |
. . . . . 6
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊))) |
57 | 32 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑥 ∈ (Base‘𝑊)) |
58 | 57 | 3ad2ant3 1134 |
. . . . . 6
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘𝑊)) |
59 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
60 | 30, 22, 59, 35 | lmodvscl 20140 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑞 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑞( ·𝑠
‘𝑊)𝑥) ∈ (Base‘𝑊)) |
61 | 52, 56, 58, 60 | syl3anc 1370 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (𝑞( ·𝑠
‘𝑊)𝑥) ∈ (Base‘𝑊)) |
62 | 33 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑦 ∈ (Base‘𝑊)) |
63 | 62 | 3ad2ant3 1134 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊)) |
64 | 31 | sseli 3917 |
. . . . . . 7
⊢ (𝑧 ∈ (Base‘𝑋) → 𝑧 ∈ (Base‘𝑊)) |
65 | 64 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑧 ∈ (Base‘𝑊)) |
66 | 65 | 3ad2ant3 1134 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑧 ∈ (Base‘𝑊)) |
67 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
68 | | eqid 2738 |
. . . . . 6
⊢
(+g‘(Scalar‘𝑊)) =
(+g‘(Scalar‘𝑊)) |
69 | 22, 34, 30, 67, 68 | ipdir 20844 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ ((𝑞(
·𝑠 ‘𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = (((𝑞( ·𝑠
‘𝑊)𝑥)(·𝑖‘𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) |
70 | 50, 61, 63, 66, 69 | syl13anc 1371 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = (((𝑞( ·𝑠
‘𝑊)𝑥)(·𝑖‘𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) |
71 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘(Scalar‘𝑊)) =
(.r‘(Scalar‘𝑊)) |
72 | 22, 34, 30, 35, 59, 71 | ipass 20850 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ (𝑞 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠
‘𝑊)𝑥)(·𝑖‘𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))) |
73 | 50, 56, 58, 66, 72 | syl13anc 1371 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((𝑞( ·𝑠
‘𝑊)𝑥)(·𝑖‘𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))) |
74 | 73 | oveq1d 7290 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠
‘𝑊)𝑥)(·𝑖‘𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) |
75 | 70, 74 | eqtrd 2778 |
. . 3
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) |
76 | 6, 67 | ressplusg 17000 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑆 → (+g‘𝑊) = (+g‘𝑋)) |
77 | 76 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → (+g‘𝑋) = (+g‘𝑊)) |
78 | 6, 59 | ressvsca 17054 |
. . . . . . . . . 10
⊢ (𝑈 ∈ 𝑆 → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑋)) |
79 | 78 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑆 → (
·𝑠 ‘𝑋) = ( ·𝑠
‘𝑊)) |
80 | 79 | oveqd 7292 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → (𝑞( ·𝑠
‘𝑋)𝑥) = (𝑞( ·𝑠
‘𝑊)𝑥)) |
81 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → 𝑦 = 𝑦) |
82 | 77, 80, 81 | oveq123d 7296 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 → ((𝑞( ·𝑠
‘𝑋)𝑥)(+g‘𝑋)𝑦) = ((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) |
83 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 → 𝑧 = 𝑧) |
84 | 44, 82, 83 | oveq123d 7296 |
. . . . . 6
⊢ (𝑈 ∈ 𝑆 → (((𝑞( ·𝑠
‘𝑋)𝑥)(+g‘𝑋)𝑦)(·𝑖‘𝑋)𝑧) = (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧)) |
85 | 24 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 →
(+g‘(Scalar‘𝑋)) =
(+g‘(Scalar‘𝑊))) |
86 | 24 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 →
(.r‘(Scalar‘𝑋)) =
(.r‘(Scalar‘𝑊))) |
87 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → 𝑞 = 𝑞) |
88 | 44 | oveqd 7292 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → (𝑥(·𝑖‘𝑋)𝑧) = (𝑥(·𝑖‘𝑊)𝑧)) |
89 | 86, 87, 88 | oveq123d 7296 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 → (𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖‘𝑋)𝑧)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))) |
90 | 44 | oveqd 7292 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 → (𝑦(·𝑖‘𝑋)𝑧) = (𝑦(·𝑖‘𝑊)𝑧)) |
91 | 85, 89, 90 | oveq123d 7296 |
. . . . . 6
⊢ (𝑈 ∈ 𝑆 → ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖‘𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖‘𝑋)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) |
92 | 84, 91 | eqeq12d 2754 |
. . . . 5
⊢ (𝑈 ∈ 𝑆 → ((((𝑞( ·𝑠
‘𝑋)𝑥)(+g‘𝑋)𝑦)(·𝑖‘𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖‘𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖‘𝑋)𝑧)) ↔ (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧)))) |
93 | 92 | adantl 482 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((((𝑞( ·𝑠
‘𝑋)𝑥)(+g‘𝑋)𝑦)(·𝑖‘𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖‘𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖‘𝑋)𝑧)) ↔ (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧)))) |
94 | 93 | 3ad2ant1 1132 |
. . 3
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((((𝑞( ·𝑠
‘𝑋)𝑥)(+g‘𝑋)𝑦)(·𝑖‘𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖‘𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖‘𝑋)𝑧)) ↔ (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧)))) |
95 | 75, 94 | mpbird 256 |
. 2
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠
‘𝑋)𝑥)(+g‘𝑋)𝑦)(·𝑖‘𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖‘𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖‘𝑋)𝑧))) |
96 | 44 | adantl 482 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(·𝑖‘𝑋) =
(·𝑖‘𝑊)) |
97 | 96 | oveqdr 7303 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (𝑥(·𝑖‘𝑋)𝑥) = (𝑥(·𝑖‘𝑊)𝑥)) |
98 | 24 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 →
(0g‘(Scalar‘𝑋)) =
(0g‘(Scalar‘𝑊))) |
99 | 98 | adantl 482 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(0g‘(Scalar‘𝑋)) =
(0g‘(Scalar‘𝑊))) |
100 | 99 | adantr 481 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) →
(0g‘(Scalar‘𝑋)) =
(0g‘(Scalar‘𝑊))) |
101 | 97, 100 | eqeq12d 2754 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖‘𝑋)𝑥) = (0g‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
102 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
103 | 22, 34, 30, 102, 7 | ipeq0 20843 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g‘𝑊))) |
104 | 29, 32, 103 | syl2an 596 |
. . . . 5
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g‘𝑊))) |
105 | 104 | biimpd 228 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊))) |
106 | 101, 105 | sylbid 239 |
. . 3
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖‘𝑋)𝑥) = (0g‘(Scalar‘𝑋)) → 𝑥 = (0g‘𝑊))) |
107 | 106 | 3impia 1116 |
. 2
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ (𝑥(·𝑖‘𝑋)𝑥) = (0g‘(Scalar‘𝑋))) → 𝑥 = (0g‘𝑊)) |
108 | 24 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑈 ∈ 𝑆 →
(*𝑟‘(Scalar‘𝑋)) =
(*𝑟‘(Scalar‘𝑊))) |
109 | 108 | fveq1d 6776 |
. . . . . 6
⊢ (𝑈 ∈ 𝑆 →
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦)) =
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦))) |
110 | 109 | adantl 482 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦)) =
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦))) |
111 | 110 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) →
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦)) =
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦))) |
112 | | eqid 2738 |
. . . . . 6
⊢
(*𝑟‘(Scalar‘𝑊)) =
(*𝑟‘(Scalar‘𝑊)) |
113 | 22, 34, 30, 112 | ipcj 20839 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) →
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)) |
114 | 29, 32, 33, 113 | syl3an 1159 |
. . . 4
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) →
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)) |
115 | 111, 114 | eqtrd 2778 |
. . 3
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) →
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)) |
116 | 45 | fveq2d 6778 |
. . . . . 6
⊢ (𝑈 ∈ 𝑆 →
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑋)𝑦)) =
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦))) |
117 | 44 | oveqd 7292 |
. . . . . 6
⊢ (𝑈 ∈ 𝑆 → (𝑦(·𝑖‘𝑋)𝑥) = (𝑦(·𝑖‘𝑊)𝑥)) |
118 | 116, 117 | eqeq12d 2754 |
. . . . 5
⊢ (𝑈 ∈ 𝑆 →
(((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑋)𝑦)) = (𝑦(·𝑖‘𝑋)𝑥) ↔
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) |
119 | 118 | adantl 482 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) →
(((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑋)𝑦)) = (𝑦(·𝑖‘𝑋)𝑥) ↔
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) |
120 | 119 | 3ad2ant1 1132 |
. . 3
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) →
(((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑋)𝑦)) = (𝑦(·𝑖‘𝑋)𝑥) ↔
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) |
121 | 115, 120 | mpbird 256 |
. 2
⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) →
((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖‘𝑋)𝑦)) = (𝑦(·𝑖‘𝑋)𝑥)) |
122 | 1, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 21, 28, 49, 95, 107, 121 | isphld 20859 |
1
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ PreHil) |