MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlssphl Structured version   Visualization version   GIF version

Theorem phlssphl 20325
Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
phlssphl.x 𝑋 = (𝑊s 𝑈)
phlssphl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
phlssphl ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)

Proof of Theorem phlssphl
Dummy variables 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘𝑋) = (Base‘𝑋))
2 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g𝑋) = (+g𝑋))
3 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ( ·𝑠𝑋) = ( ·𝑠𝑋))
4 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑋))
5 phllmod 20296 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
6 phlssphl.x . . . . 5 𝑋 = (𝑊s 𝑈)
7 eqid 2798 . . . . 5 (0g𝑊) = (0g𝑊)
8 eqid 2798 . . . . 5 (0g𝑋) = (0g𝑋)
9 phlssphl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
106, 7, 8, 9lss0v 19334 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
115, 10sylan 576 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
1211eqcomd 2804 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑊) = (0g𝑋))
13 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑋))
14 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
15 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑋)))
16 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑋)))
17 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑋)))
18 eqidd 2799 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋)))
19 phllvec 20295 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
206, 9lsslvec 19425 . . 3 ((𝑊 ∈ LVec ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
2119, 20sylan 576 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
22 eqid 2798 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
236, 22resssca 16349 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
2423eqcomd 2804 . . . 4 (𝑈𝑆 → (Scalar‘𝑋) = (Scalar‘𝑊))
2524adantl 474 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑊))
2622phlsrng 20297 . . . 4 (𝑊 ∈ PreHil → (Scalar‘𝑊) ∈ *-Ring)
2726adantr 473 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ *-Ring)
2825, 27eqeltrd 2877 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ *-Ring)
29 simpl 475 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ PreHil)
30 eqid 2798 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
316, 30ressbasss 16254 . . . . . 6 (Base‘𝑋) ⊆ (Base‘𝑊)
3231sseli 3793 . . . . 5 (𝑥 ∈ (Base‘𝑋) → 𝑥 ∈ (Base‘𝑊))
3331sseli 3793 . . . . 5 (𝑦 ∈ (Base‘𝑋) → 𝑦 ∈ (Base‘𝑊))
34 eqid 2798 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
35 eqid 2798 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3622, 34, 30, 35ipcl 20299 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3729, 32, 33, 36syl3an 1200 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3824fveq2d 6414 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3938eleq2d 2863 . . . . . 6 (𝑈𝑆 → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4039adantl 474 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
41403ad2ant1 1164 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4237, 41mpbird 249 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))
43 eqid 2798 . . . . . . . 8 (·𝑖𝑋) = (·𝑖𝑋)
446, 34, 43ssipeq 20322 . . . . . . 7 (𝑈𝑆 → (·𝑖𝑋) = (·𝑖𝑊))
4544oveqd 6894 . . . . . 6 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑦) = (𝑥(·𝑖𝑊)𝑦))
4645eleq1d 2862 . . . . 5 (𝑈𝑆 → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4746adantl 474 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
48473ad2ant1 1164 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4942, 48mpbird 249 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)))
50293ad2ant1 1164 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ PreHil)
515adantr 473 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
52513ad2ant1 1164 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
5325fveq2d 6414 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
5453eleq2d 2863 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑞 ∈ (Base‘(Scalar‘𝑋)) ↔ 𝑞 ∈ (Base‘(Scalar‘𝑊))))
5554biimpa 469 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
56553adant3 1163 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
57323ad2ant1 1164 . . . . . . 7 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑥 ∈ (Base‘𝑊))
58573ad2ant3 1166 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘𝑊))
59 eqid 2798 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6030, 22, 59, 35lmodvscl 19195 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
6152, 56, 58, 60syl3anc 1491 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
62333ad2ant2 1165 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑦 ∈ (Base‘𝑊))
63623ad2ant3 1166 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
6431sseli 3793 . . . . . . 7 (𝑧 ∈ (Base‘𝑋) → 𝑧 ∈ (Base‘𝑊))
65643ad2ant3 1166 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑧 ∈ (Base‘𝑊))
66653ad2ant3 1166 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑧 ∈ (Base‘𝑊))
67 eqid 2798 . . . . . 6 (+g𝑊) = (+g𝑊)
68 eqid 2798 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
6922, 34, 30, 67, 68ipdir 20305 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7050, 61, 63, 66, 69syl13anc 1492 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
71 eqid 2798 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7222, 34, 30, 35, 59, 71ipass 20311 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7350, 56, 58, 66, 72syl13anc 1492 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7473oveq1d 6892 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7570, 74eqtrd 2832 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
766, 67ressplusg 16311 . . . . . . . . 9 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
7776eqcomd 2804 . . . . . . . 8 (𝑈𝑆 → (+g𝑋) = (+g𝑊))
786, 59ressvsca 16350 . . . . . . . . . 10 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7978eqcomd 2804 . . . . . . . . 9 (𝑈𝑆 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
8079oveqd 6894 . . . . . . . 8 (𝑈𝑆 → (𝑞( ·𝑠𝑋)𝑥) = (𝑞( ·𝑠𝑊)𝑥))
81 eqidd 2799 . . . . . . . 8 (𝑈𝑆𝑦 = 𝑦)
8277, 80, 81oveq123d 6898 . . . . . . 7 (𝑈𝑆 → ((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦) = ((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦))
83 eqidd 2799 . . . . . . 7 (𝑈𝑆𝑧 = 𝑧)
8444, 82, 83oveq123d 6898 . . . . . 6 (𝑈𝑆 → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧))
8524fveq2d 6414 . . . . . . 7 (𝑈𝑆 → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑊)))
8624fveq2d 6414 . . . . . . . 8 (𝑈𝑆 → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑊)))
87 eqidd 2799 . . . . . . . 8 (𝑈𝑆𝑞 = 𝑞)
8844oveqd 6894 . . . . . . . 8 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑧) = (𝑥(·𝑖𝑊)𝑧))
8986, 87, 88oveq123d 6898 . . . . . . 7 (𝑈𝑆 → (𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
9044oveqd 6894 . . . . . . 7 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑧) = (𝑦(·𝑖𝑊)𝑧))
9185, 89, 90oveq123d 6898 . . . . . 6 (𝑈𝑆 → ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
9284, 91eqeq12d 2813 . . . . 5 (𝑈𝑆 → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9392adantl 474 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
94933ad2ant1 1164 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9575, 94mpbird 249 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)))
9644adantl 474 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑊))
9796oveqdr 6905 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑥) = (𝑥(·𝑖𝑊)𝑥))
9824fveq2d 6414 . . . . . . 7 (𝑈𝑆 → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
9998adantl 474 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10099adantr 473 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10197, 100eqeq12d 2813 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
102 eqid 2798 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10322, 34, 30, 102, 7ipeq0 20304 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
10429, 32, 103syl2an 590 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
105104biimpd 221 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)))
106101, 105sylbid 232 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) → 𝑥 = (0g𝑊)))
1071063impia 1146 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ (𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋))) → 𝑥 = (0g𝑊))
10824fveq2d 6414 . . . . . . 7 (𝑈𝑆 → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑊)))
109108fveq1d 6412 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
110109adantl 474 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
1111103ad2ant1 1164 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
112 eqid 2798 . . . . . 6 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
11322, 34, 30, 112ipcj 20300 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11429, 32, 33, 113syl3an 1200 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
115111, 114eqtrd 2832 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11645fveq2d 6414 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)))
11744oveqd 6894 . . . . . 6 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑥) = (𝑦(·𝑖𝑊)𝑥))
118116, 117eqeq12d 2813 . . . . 5 (𝑈𝑆 → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
119118adantl 474 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
1201193ad2ant1 1164 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
121115, 120mpbird 249 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥))
1221, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 21, 28, 49, 95, 107, 121isphld 20320 1 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  cfv 6100  (class class class)co 6877  Basecbs 16181  s cress 16182  +gcplusg 16264  .rcmulr 16265  *𝑟cstv 16266  Scalarcsca 16267   ·𝑠 cvsca 16268  ·𝑖cip 16269  0gc0g 16412  *-Ringcsr 19159  LModclmod 19178  LSubSpclss 19247  LVecclvec 19420  PreHilcphl 20290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-nn 11312  df-2 11373  df-3 11374  df-4 11375  df-5 11376  df-6 11377  df-7 11378  df-8 11379  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-sca 16280  df-vsca 16281  df-ip 16282  df-0g 16414  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-minusg 17739  df-sbg 17740  df-subg 17901  df-ghm 17968  df-mgp 18803  df-ur 18815  df-ring 18862  df-subrg 19093  df-lmod 19180  df-lss 19248  df-lsp 19290  df-lmhm 19340  df-lvec 19421  df-sra 19492  df-rgmod 19493  df-phl 20292
This theorem is referenced by:  cphsscph  23374
  Copyright terms: Public domain W3C validator