MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlssphl Structured version   Visualization version   GIF version

Theorem phlssphl 21063
Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
phlssphl.x 𝑋 = (𝑊s 𝑈)
phlssphl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
phlssphl ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)

Proof of Theorem phlssphl
Dummy variables 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘𝑋) = (Base‘𝑋))
2 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g𝑋) = (+g𝑋))
3 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ( ·𝑠𝑋) = ( ·𝑠𝑋))
4 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑋))
5 phllmod 21034 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
6 phlssphl.x . . . . 5 𝑋 = (𝑊s 𝑈)
7 eqid 2736 . . . . 5 (0g𝑊) = (0g𝑊)
8 eqid 2736 . . . . 5 (0g𝑋) = (0g𝑋)
9 phlssphl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
106, 7, 8, 9lss0v 20477 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
115, 10sylan 580 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
1211eqcomd 2742 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑊) = (0g𝑋))
13 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑋))
14 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
15 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑋)))
16 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑋)))
17 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑋)))
18 eqidd 2737 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋)))
19 phllvec 21033 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
206, 9lsslvec 20568 . . 3 ((𝑊 ∈ LVec ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
2119, 20sylan 580 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
22 eqid 2736 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
236, 22resssca 17224 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
2423eqcomd 2742 . . . 4 (𝑈𝑆 → (Scalar‘𝑋) = (Scalar‘𝑊))
2524adantl 482 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑊))
2622phlsrng 21035 . . . 4 (𝑊 ∈ PreHil → (Scalar‘𝑊) ∈ *-Ring)
2726adantr 481 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ *-Ring)
2825, 27eqeltrd 2838 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ *-Ring)
29 simpl 483 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ PreHil)
30 eqid 2736 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
316, 30ressbasss 17121 . . . . . 6 (Base‘𝑋) ⊆ (Base‘𝑊)
3231sseli 3940 . . . . 5 (𝑥 ∈ (Base‘𝑋) → 𝑥 ∈ (Base‘𝑊))
3331sseli 3940 . . . . 5 (𝑦 ∈ (Base‘𝑋) → 𝑦 ∈ (Base‘𝑊))
34 eqid 2736 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
35 eqid 2736 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3622, 34, 30, 35ipcl 21037 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3729, 32, 33, 36syl3an 1160 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3824fveq2d 6846 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3938eleq2d 2823 . . . . . 6 (𝑈𝑆 → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4039adantl 482 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
41403ad2ant1 1133 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4237, 41mpbird 256 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))
43 eqid 2736 . . . . . . . 8 (·𝑖𝑋) = (·𝑖𝑋)
446, 34, 43ssipeq 21060 . . . . . . 7 (𝑈𝑆 → (·𝑖𝑋) = (·𝑖𝑊))
4544oveqd 7374 . . . . . 6 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑦) = (𝑥(·𝑖𝑊)𝑦))
4645eleq1d 2822 . . . . 5 (𝑈𝑆 → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4746adantl 482 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
48473ad2ant1 1133 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4942, 48mpbird 256 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)))
50293ad2ant1 1133 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ PreHil)
515adantr 481 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
52513ad2ant1 1133 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
5325fveq2d 6846 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
5453eleq2d 2823 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑞 ∈ (Base‘(Scalar‘𝑋)) ↔ 𝑞 ∈ (Base‘(Scalar‘𝑊))))
5554biimpa 477 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
56553adant3 1132 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
57323ad2ant1 1133 . . . . . . 7 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑥 ∈ (Base‘𝑊))
58573ad2ant3 1135 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘𝑊))
59 eqid 2736 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6030, 22, 59, 35lmodvscl 20339 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
6152, 56, 58, 60syl3anc 1371 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
62333ad2ant2 1134 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑦 ∈ (Base‘𝑊))
63623ad2ant3 1135 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
6431sseli 3940 . . . . . . 7 (𝑧 ∈ (Base‘𝑋) → 𝑧 ∈ (Base‘𝑊))
65643ad2ant3 1135 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑧 ∈ (Base‘𝑊))
66653ad2ant3 1135 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑧 ∈ (Base‘𝑊))
67 eqid 2736 . . . . . 6 (+g𝑊) = (+g𝑊)
68 eqid 2736 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
6922, 34, 30, 67, 68ipdir 21043 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7050, 61, 63, 66, 69syl13anc 1372 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
71 eqid 2736 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7222, 34, 30, 35, 59, 71ipass 21049 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7350, 56, 58, 66, 72syl13anc 1372 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7473oveq1d 7372 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7570, 74eqtrd 2776 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
766, 67ressplusg 17171 . . . . . . . . 9 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
7776eqcomd 2742 . . . . . . . 8 (𝑈𝑆 → (+g𝑋) = (+g𝑊))
786, 59ressvsca 17225 . . . . . . . . . 10 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7978eqcomd 2742 . . . . . . . . 9 (𝑈𝑆 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
8079oveqd 7374 . . . . . . . 8 (𝑈𝑆 → (𝑞( ·𝑠𝑋)𝑥) = (𝑞( ·𝑠𝑊)𝑥))
81 eqidd 2737 . . . . . . . 8 (𝑈𝑆𝑦 = 𝑦)
8277, 80, 81oveq123d 7378 . . . . . . 7 (𝑈𝑆 → ((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦) = ((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦))
83 eqidd 2737 . . . . . . 7 (𝑈𝑆𝑧 = 𝑧)
8444, 82, 83oveq123d 7378 . . . . . 6 (𝑈𝑆 → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧))
8524fveq2d 6846 . . . . . . 7 (𝑈𝑆 → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑊)))
8624fveq2d 6846 . . . . . . . 8 (𝑈𝑆 → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑊)))
87 eqidd 2737 . . . . . . . 8 (𝑈𝑆𝑞 = 𝑞)
8844oveqd 7374 . . . . . . . 8 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑧) = (𝑥(·𝑖𝑊)𝑧))
8986, 87, 88oveq123d 7378 . . . . . . 7 (𝑈𝑆 → (𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
9044oveqd 7374 . . . . . . 7 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑧) = (𝑦(·𝑖𝑊)𝑧))
9185, 89, 90oveq123d 7378 . . . . . 6 (𝑈𝑆 → ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
9284, 91eqeq12d 2752 . . . . 5 (𝑈𝑆 → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9392adantl 482 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
94933ad2ant1 1133 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9575, 94mpbird 256 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)))
9644adantl 482 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑊))
9796oveqdr 7385 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑥) = (𝑥(·𝑖𝑊)𝑥))
9824fveq2d 6846 . . . . . . 7 (𝑈𝑆 → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
9998adantl 482 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10099adantr 481 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10197, 100eqeq12d 2752 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
102 eqid 2736 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10322, 34, 30, 102, 7ipeq0 21042 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
10429, 32, 103syl2an 596 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
105104biimpd 228 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)))
106101, 105sylbid 239 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) → 𝑥 = (0g𝑊)))
1071063impia 1117 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ (𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋))) → 𝑥 = (0g𝑊))
10824fveq2d 6846 . . . . . . 7 (𝑈𝑆 → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑊)))
109108fveq1d 6844 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
110109adantl 482 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
1111103ad2ant1 1133 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
112 eqid 2736 . . . . . 6 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
11322, 34, 30, 112ipcj 21038 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11429, 32, 33, 113syl3an 1160 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
115111, 114eqtrd 2776 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11645fveq2d 6846 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)))
11744oveqd 7374 . . . . . 6 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑥) = (𝑦(·𝑖𝑊)𝑥))
118116, 117eqeq12d 2752 . . . . 5 (𝑈𝑆 → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
119118adantl 482 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
1201193ad2ant1 1133 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
121115, 120mpbird 256 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥))
1221, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 21, 28, 49, 95, 107, 121isphld 21058 1 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  Basecbs 17083  s cress 17112  +gcplusg 17133  .rcmulr 17134  *𝑟cstv 17135  Scalarcsca 17136   ·𝑠 cvsca 17137  ·𝑖cip 17138  0gc0g 17321  *-Ringcsr 20303  LModclmod 20322  LSubSpclss 20392  LVecclvec 20563  PreHilcphl 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-phl 21030
This theorem is referenced by:  cphsscph  24615
  Copyright terms: Public domain W3C validator