MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlssphl Structured version   Visualization version   GIF version

Theorem phlssphl 21598
Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
phlssphl.x 𝑋 = (𝑊s 𝑈)
phlssphl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
phlssphl ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)

Proof of Theorem phlssphl
Dummy variables 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘𝑋) = (Base‘𝑋))
2 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g𝑋) = (+g𝑋))
3 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ( ·𝑠𝑋) = ( ·𝑠𝑋))
4 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑋))
5 phllmod 21569 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
6 phlssphl.x . . . . 5 𝑋 = (𝑊s 𝑈)
7 eqid 2733 . . . . 5 (0g𝑊) = (0g𝑊)
8 eqid 2733 . . . . 5 (0g𝑋) = (0g𝑋)
9 phlssphl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
106, 7, 8, 9lss0v 20952 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
115, 10sylan 580 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
1211eqcomd 2739 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑊) = (0g𝑋))
13 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑋))
14 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
15 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑋)))
16 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑋)))
17 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑋)))
18 eqidd 2734 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋)))
19 phllvec 21568 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
206, 9lsslvec 21045 . . 3 ((𝑊 ∈ LVec ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
2119, 20sylan 580 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
22 eqid 2733 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
236, 22resssca 17249 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
2423eqcomd 2739 . . . 4 (𝑈𝑆 → (Scalar‘𝑋) = (Scalar‘𝑊))
2524adantl 481 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑊))
2622phlsrng 21570 . . . 4 (𝑊 ∈ PreHil → (Scalar‘𝑊) ∈ *-Ring)
2726adantr 480 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ *-Ring)
2825, 27eqeltrd 2833 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ *-Ring)
29 simpl 482 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ PreHil)
30 eqid 2733 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
316, 30ressbasss 17152 . . . . . 6 (Base‘𝑋) ⊆ (Base‘𝑊)
3231sseli 3926 . . . . 5 (𝑥 ∈ (Base‘𝑋) → 𝑥 ∈ (Base‘𝑊))
3331sseli 3926 . . . . 5 (𝑦 ∈ (Base‘𝑋) → 𝑦 ∈ (Base‘𝑊))
34 eqid 2733 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
35 eqid 2733 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3622, 34, 30, 35ipcl 21572 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3729, 32, 33, 36syl3an 1160 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3824fveq2d 6832 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3938eleq2d 2819 . . . . . 6 (𝑈𝑆 → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4039adantl 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
41403ad2ant1 1133 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4237, 41mpbird 257 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))
43 eqid 2733 . . . . . . . 8 (·𝑖𝑋) = (·𝑖𝑋)
446, 34, 43ssipeq 21595 . . . . . . 7 (𝑈𝑆 → (·𝑖𝑋) = (·𝑖𝑊))
4544oveqd 7369 . . . . . 6 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑦) = (𝑥(·𝑖𝑊)𝑦))
4645eleq1d 2818 . . . . 5 (𝑈𝑆 → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4746adantl 481 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
48473ad2ant1 1133 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4942, 48mpbird 257 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)))
50293ad2ant1 1133 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ PreHil)
515adantr 480 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
52513ad2ant1 1133 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
5325fveq2d 6832 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
5453eleq2d 2819 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑞 ∈ (Base‘(Scalar‘𝑋)) ↔ 𝑞 ∈ (Base‘(Scalar‘𝑊))))
5554biimpa 476 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
56553adant3 1132 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
57323ad2ant1 1133 . . . . . . 7 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑥 ∈ (Base‘𝑊))
58573ad2ant3 1135 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘𝑊))
59 eqid 2733 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6030, 22, 59, 35lmodvscl 20813 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
6152, 56, 58, 60syl3anc 1373 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
62333ad2ant2 1134 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑦 ∈ (Base‘𝑊))
63623ad2ant3 1135 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
6431sseli 3926 . . . . . . 7 (𝑧 ∈ (Base‘𝑋) → 𝑧 ∈ (Base‘𝑊))
65643ad2ant3 1135 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑧 ∈ (Base‘𝑊))
66653ad2ant3 1135 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑧 ∈ (Base‘𝑊))
67 eqid 2733 . . . . . 6 (+g𝑊) = (+g𝑊)
68 eqid 2733 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
6922, 34, 30, 67, 68ipdir 21578 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7050, 61, 63, 66, 69syl13anc 1374 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
71 eqid 2733 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7222, 34, 30, 35, 59, 71ipass 21584 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7350, 56, 58, 66, 72syl13anc 1374 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7473oveq1d 7367 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7570, 74eqtrd 2768 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
766, 67ressplusg 17197 . . . . . . . . 9 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
7776eqcomd 2739 . . . . . . . 8 (𝑈𝑆 → (+g𝑋) = (+g𝑊))
786, 59ressvsca 17250 . . . . . . . . . 10 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7978eqcomd 2739 . . . . . . . . 9 (𝑈𝑆 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
8079oveqd 7369 . . . . . . . 8 (𝑈𝑆 → (𝑞( ·𝑠𝑋)𝑥) = (𝑞( ·𝑠𝑊)𝑥))
81 eqidd 2734 . . . . . . . 8 (𝑈𝑆𝑦 = 𝑦)
8277, 80, 81oveq123d 7373 . . . . . . 7 (𝑈𝑆 → ((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦) = ((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦))
83 eqidd 2734 . . . . . . 7 (𝑈𝑆𝑧 = 𝑧)
8444, 82, 83oveq123d 7373 . . . . . 6 (𝑈𝑆 → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧))
8524fveq2d 6832 . . . . . . 7 (𝑈𝑆 → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑊)))
8624fveq2d 6832 . . . . . . . 8 (𝑈𝑆 → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑊)))
87 eqidd 2734 . . . . . . . 8 (𝑈𝑆𝑞 = 𝑞)
8844oveqd 7369 . . . . . . . 8 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑧) = (𝑥(·𝑖𝑊)𝑧))
8986, 87, 88oveq123d 7373 . . . . . . 7 (𝑈𝑆 → (𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
9044oveqd 7369 . . . . . . 7 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑧) = (𝑦(·𝑖𝑊)𝑧))
9185, 89, 90oveq123d 7373 . . . . . 6 (𝑈𝑆 → ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
9284, 91eqeq12d 2749 . . . . 5 (𝑈𝑆 → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9392adantl 481 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
94933ad2ant1 1133 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9575, 94mpbird 257 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)))
9644adantl 481 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑊))
9796oveqdr 7380 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑥) = (𝑥(·𝑖𝑊)𝑥))
9824fveq2d 6832 . . . . . . 7 (𝑈𝑆 → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
9998adantl 481 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10099adantr 480 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10197, 100eqeq12d 2749 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
102 eqid 2733 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10322, 34, 30, 102, 7ipeq0 21577 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
10429, 32, 103syl2an 596 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
105104biimpd 229 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)))
106101, 105sylbid 240 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) → 𝑥 = (0g𝑊)))
1071063impia 1117 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ (𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋))) → 𝑥 = (0g𝑊))
10824fveq2d 6832 . . . . . . 7 (𝑈𝑆 → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑊)))
109108fveq1d 6830 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
110109adantl 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
1111103ad2ant1 1133 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
112 eqid 2733 . . . . . 6 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
11322, 34, 30, 112ipcj 21573 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11429, 32, 33, 113syl3an 1160 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
115111, 114eqtrd 2768 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11645fveq2d 6832 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)))
11744oveqd 7369 . . . . . 6 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑥) = (𝑦(·𝑖𝑊)𝑥))
118116, 117eqeq12d 2749 . . . . 5 (𝑈𝑆 → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
119118adantl 481 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
1201193ad2ant1 1133 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
121115, 120mpbird 257 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥))
1221, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 21, 28, 49, 95, 107, 121isphld 21593 1 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  +gcplusg 17163  .rcmulr 17164  *𝑟cstv 17165  Scalarcsca 17166   ·𝑠 cvsca 17167  ·𝑖cip 17168  0gc0g 17345  *-Ringcsr 20755  LModclmod 20795  LSubSpclss 20866  LVecclvec 21038  PreHilcphl 21563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lmhm 20958  df-lvec 21039  df-sra 21109  df-rgmod 21110  df-phl 21565
This theorem is referenced by:  cphsscph  25179
  Copyright terms: Public domain W3C validator