| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phclm | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| Ref | Expression |
|---|---|
| phclm | ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphcph.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 2 | phllmod 21567 | . . 3 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | eqid 2731 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 5 | tcphcph.2 | . . . 4 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 6 | phllvec 21566 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) |
| 8 | tcphcph.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 9 | 8 | lvecdrng 21039 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| 11 | 4, 5, 10 | cphsubrglem 25104 | . . 3 ⊢ (𝜑 → (𝐹 = (ℂfld ↾s (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld))) |
| 12 | 11 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s (Base‘𝐹))) |
| 13 | 11 | simp3d 1144 | . 2 ⊢ (𝜑 → (Base‘𝐹) ∈ (SubRing‘ℂfld)) |
| 14 | 8, 4 | isclm 24991 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld))) |
| 15 | 3, 12, 13, 14 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 SubRingcsubrg 20484 DivRingcdr 20644 LModclmod 20793 LVecclvec 21036 ℂfldccnfld 21291 PreHilcphl 21561 ℂModcclm 24989 toℂPreHilctcph 25094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-seq 13909 df-exp 13969 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-subrg 20485 df-drng 20646 df-lvec 21037 df-cnfld 21292 df-phl 21563 df-clm 24990 |
| This theorem is referenced by: tcphcphlem3 25160 ipcau2 25161 tcphcphlem1 25162 tcphcphlem2 25163 tcphcph 25164 |
| Copyright terms: Public domain | W3C validator |