![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phclm | Structured version Visualization version GIF version |
Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
Ref | Expression |
---|---|
phclm | ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphcph.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
2 | phllmod 20338 | . . 3 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | eqid 2826 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
5 | tcphcph.2 | . . . 4 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
6 | phllvec 20337 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) |
8 | tcphcph.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
9 | 8 | lvecdrng 19465 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ DivRing) |
11 | 4, 5, 10 | cphsubrglem 23347 | . . 3 ⊢ (𝜑 → (𝐹 = (ℂfld ↾s (Base‘𝐹)) ∧ (Base‘𝐹) = (𝐾 ∩ ℂ) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld))) |
12 | 11 | simp1d 1178 | . 2 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s (Base‘𝐹))) |
13 | 11 | simp3d 1180 | . 2 ⊢ (𝜑 → (Base‘𝐹) ∈ (SubRing‘ℂfld)) |
14 | 8, 4 | isclm 23234 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld))) |
15 | 3, 12, 13, 14 | syl3anbrc 1449 | 1 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ∩ cin 3798 ‘cfv 6124 (class class class)co 6906 ℂcc 10251 Basecbs 16223 ↾s cress 16224 Scalarcsca 16309 DivRingcdr 19104 SubRingcsubrg 19133 LModclmod 19220 LVecclvec 19462 ℂfldccnfld 20107 PreHilcphl 20332 ℂModcclm 23232 toℂPreHilctcph 23337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-addf 10332 ax-mulf 10333 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-tpos 7618 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-dec 11823 df-uz 11970 df-fz 12621 df-seq 13097 df-exp 13156 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-starv 16321 df-tset 16325 df-ple 16326 df-ds 16328 df-unif 16329 df-0g 16456 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-grp 17780 df-subg 17943 df-cmn 18549 df-mgp 18845 df-ur 18857 df-ring 18904 df-cring 18905 df-oppr 18978 df-dvdsr 18996 df-unit 18997 df-drng 19106 df-subrg 19135 df-lvec 19463 df-cnfld 20108 df-phl 20334 df-clm 23233 |
This theorem is referenced by: tcphcphlem3 23402 ipcau2 23403 tcphcphlem1 23404 tcphcphlem2 23405 tcphcph 23406 |
Copyright terms: Public domain | W3C validator |