MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obslbs Structured version   Visualization version   GIF version

Theorem obslbs 20284
Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
obslbs.j 𝐽 = (LBasis‘𝑊)
obslbs.n 𝑁 = (LSpan‘𝑊)
obslbs.c 𝐶 = (CSubSp‘𝑊)
Assertion
Ref Expression
obslbs (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))

Proof of Theorem obslbs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsrcl 20277 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
2 eqid 2771 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
32obsss 20278 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
4 eqid 2771 . . . . . . 7 (ocv‘𝑊) = (ocv‘𝑊)
5 obslbs.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
62, 4, 5ocvlsp 20230 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
71, 3, 6syl2anc 573 . . . . 5 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
87fveq2d 6334 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))
94, 2obs2ocv 20281 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)) = (Base‘𝑊))
108, 9eqtrd 2805 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = (Base‘𝑊))
1110eqeq2d 2781 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) ↔ (𝑁𝐵) = (Base‘𝑊)))
12 obslbs.c . . . 4 𝐶 = (CSubSp‘𝑊)
134, 12iscss 20237 . . 3 (𝑊 ∈ PreHil → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
141, 13syl 17 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
15 phllvec 20184 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
161, 15syl 17 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LVec)
17 pssnel 4181 . . . . . . 7 (𝑥𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
1817adantl 467 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
19 simpll 750 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ∈ (OBasis‘𝑊))
20 pssss 3852 . . . . . . . . . . . 12 (𝑥𝐵𝑥𝐵)
2120ad2antlr 706 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
22 simpr 471 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
234obselocv 20282 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
2419, 21, 22, 23syl3anc 1476 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
25 eqid 2771 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
2625obsne0 20279 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
2719, 22, 26syl2anc 573 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
28 nelsn 4351 . . . . . . . . . . . 12 (𝑦 ≠ (0g𝑊) → ¬ 𝑦 ∈ {(0g𝑊)})
2927, 28syl 17 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {(0g𝑊)})
30 nelne1 3039 . . . . . . . . . . . 12 ((𝑦 ∈ ((ocv‘𝑊)‘𝑥) ∧ ¬ 𝑦 ∈ {(0g𝑊)}) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)})
3130expcom 398 . . . . . . . . . . 11 𝑦 ∈ {(0g𝑊)} → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3229, 31syl 17 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3324, 32sylbird 250 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
34 npss 3867 . . . . . . . . . . 11 (¬ (𝑁𝑥) ⊊ (Base‘𝑊) ↔ ((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)))
35 phllmod 20185 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
361, 35syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LMod)
3736ad2antrr 705 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ LMod)
383ad2antrr 705 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ⊆ (Base‘𝑊))
3921, 38sstrd 3762 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ⊆ (Base‘𝑊))
402, 5lspssv 19189 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ⊆ (Base‘𝑊)) → (𝑁𝑥) ⊆ (Base‘𝑊))
4137, 39, 40syl2anc 573 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑁𝑥) ⊆ (Base‘𝑊))
42 fveq2 6330 . . . . . . . . . . . . 13 ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)))
431ad2antrr 705 . . . . . . . . . . . . . . 15 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ PreHil)
442, 4, 5ocvlsp 20230 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
4543, 39, 44syl2anc 573 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
462, 4, 25ocv1 20233 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4743, 46syl 17 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4845, 47eqeq12d 2786 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)) ↔ ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
4942, 48syl5ib 234 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5041, 49embantd 59 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5134, 50syl5bi 232 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ (𝑁𝑥) ⊊ (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5251necon1ad 2960 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)} → (𝑁𝑥) ⊊ (Base‘𝑊)))
5333, 52syld 47 . . . . . . . 8 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5453expimpd 441 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ((𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5554exlimdv 2013 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5618, 55mpd 15 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (𝑁𝑥) ⊊ (Base‘𝑊))
5756ex 397 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → (𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5857alrimiv 2007 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
59 obslbs.j . . . . . 6 𝐽 = (LBasis‘𝑊)
602, 59, 5islbs3 19363 . . . . 5 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))))
61 3anan32 1082 . . . . 5 ((𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊)))
6260, 61syl6bb 276 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊))))
6362baibd 529 . . 3 ((𝑊 ∈ LVec ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6416, 3, 58, 63syl12anc 1474 . 2 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6511, 14, 643bitr4rd 301 1 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071  wal 1629   = wceq 1631  wex 1852  wcel 2145  wne 2943  wss 3723  wpss 3724  {csn 4316  cfv 6029  Basecbs 16057  0gc0g 16301  LModclmod 19066  LSpanclspn 19177  LBasisclbs 19280  LVecclvec 19308  PreHilcphl 20179  ocvcocv 20214  CSubSpccss 20215  OBasiscobs 20256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-tpos 7502  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-sca 16158  df-vsca 16159  df-ip 16160  df-0g 16303  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-ghm 17859  df-mgp 18691  df-ur 18703  df-ring 18750  df-oppr 18824  df-dvdsr 18842  df-unit 18843  df-invr 18873  df-rnghom 18918  df-drng 18952  df-staf 19048  df-srng 19049  df-lmod 19068  df-lss 19136  df-lsp 19178  df-lmhm 19228  df-lbs 19281  df-lvec 19309  df-sra 19380  df-rgmod 19381  df-phl 20181  df-ocv 20217  df-css 20218  df-obs 20259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator