Step | Hyp | Ref
| Expression |
1 | | obsrcl 20928 |
. . . . . 6
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
2 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
3 | 2 | obsss 20929 |
. . . . . 6
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊)) |
4 | | eqid 2740 |
. . . . . . 7
⊢
(ocv‘𝑊) =
(ocv‘𝑊) |
5 | | obslbs.n |
. . . . . . 7
⊢ 𝑁 = (LSpan‘𝑊) |
6 | 2, 4, 5 | ocvlsp 20879 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁‘𝐵)) = ((ocv‘𝑊)‘𝐵)) |
7 | 1, 3, 6 | syl2anc 584 |
. . . . 5
⊢ (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘(𝑁‘𝐵)) = ((ocv‘𝑊)‘𝐵)) |
8 | 7 | fveq2d 6775 |
. . . 4
⊢ (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁‘𝐵))) = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵))) |
9 | 4, 2 | obs2ocv 20932 |
. . . 4
⊢ (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)) = (Base‘𝑊)) |
10 | 8, 9 | eqtrd 2780 |
. . 3
⊢ (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁‘𝐵))) = (Base‘𝑊)) |
11 | 10 | eqeq2d 2751 |
. 2
⊢ (𝐵 ∈ (OBasis‘𝑊) → ((𝑁‘𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁‘𝐵))) ↔ (𝑁‘𝐵) = (Base‘𝑊))) |
12 | | obslbs.c |
. . . 4
⊢ 𝐶 = (ClSubSp‘𝑊) |
13 | 4, 12 | iscss 20886 |
. . 3
⊢ (𝑊 ∈ PreHil → ((𝑁‘𝐵) ∈ 𝐶 ↔ (𝑁‘𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁‘𝐵))))) |
14 | 1, 13 | syl 17 |
. 2
⊢ (𝐵 ∈ (OBasis‘𝑊) → ((𝑁‘𝐵) ∈ 𝐶 ↔ (𝑁‘𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁‘𝐵))))) |
15 | | phllvec 20832 |
. . . 4
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
16 | 1, 15 | syl 17 |
. . 3
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LVec) |
17 | | pssnel 4410 |
. . . . . . 7
⊢ (𝑥 ⊊ 𝐵 → ∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥)) |
18 | 17 | adantl 482 |
. . . . . 6
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) → ∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥)) |
19 | | simpll 764 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝐵 ∈ (OBasis‘𝑊)) |
20 | | pssss 4035 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊊ 𝐵 → 𝑥 ⊆ 𝐵) |
21 | 20 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ⊆ 𝐵) |
22 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
23 | 4 | obselocv 20933 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦 ∈ 𝑥)) |
24 | 19, 21, 22, 23 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦 ∈ 𝑥)) |
25 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑊) = (0g‘𝑊) |
26 | 25 | obsne0 20930 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑦 ∈ 𝐵) → 𝑦 ≠ (0g‘𝑊)) |
27 | 19, 22, 26 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ≠ (0g‘𝑊)) |
28 | | nelsn 4607 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ (0g‘𝑊) → ¬ 𝑦 ∈
{(0g‘𝑊)}) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦 ∈ {(0g‘𝑊)}) |
30 | | nelne1 3043 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ((ocv‘𝑊)‘𝑥) ∧ ¬ 𝑦 ∈ {(0g‘𝑊)}) → ((ocv‘𝑊)‘𝑥) ≠ {(0g‘𝑊)}) |
31 | 30 | expcom 414 |
. . . . . . . . . . 11
⊢ (¬
𝑦 ∈
{(0g‘𝑊)}
→ (𝑦 ∈
((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g‘𝑊)})) |
32 | 29, 31 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g‘𝑊)})) |
33 | 24, 32 | sylbird 259 |
. . . . . . . . 9
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (¬ 𝑦 ∈ 𝑥 → ((ocv‘𝑊)‘𝑥) ≠ {(0g‘𝑊)})) |
34 | | npss 4050 |
. . . . . . . . . . 11
⊢ (¬
(𝑁‘𝑥) ⊊ (Base‘𝑊) ↔ ((𝑁‘𝑥) ⊆ (Base‘𝑊) → (𝑁‘𝑥) = (Base‘𝑊))) |
35 | | phllmod 20833 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
36 | 1, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LMod) |
37 | 36 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ LMod) |
38 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ (Base‘𝑊)) |
39 | 21, 38 | sstrd 3936 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ⊆ (Base‘𝑊)) |
40 | 2, 5 | lspssv 20243 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ⊆ (Base‘𝑊)) → (𝑁‘𝑥) ⊆ (Base‘𝑊)) |
41 | 37, 39, 40 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑁‘𝑥) ⊆ (Base‘𝑊)) |
42 | | fveq2 6771 |
. . . . . . . . . . . . 13
⊢ ((𝑁‘𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘(𝑁‘𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊))) |
43 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ PreHil) |
44 | 2, 4, 5 | ocvlsp 20879 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁‘𝑥)) = ((ocv‘𝑊)‘𝑥)) |
45 | 43, 39, 44 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((ocv‘𝑊)‘(𝑁‘𝑥)) = ((ocv‘𝑊)‘𝑥)) |
46 | 2, 4, 25 | ocv1 20882 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ PreHil →
((ocv‘𝑊)‘(Base‘𝑊)) = {(0g‘𝑊)}) |
47 | 43, 46 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g‘𝑊)}) |
48 | 45, 47 | eqeq12d 2756 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((ocv‘𝑊)‘(𝑁‘𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)) ↔ ((ocv‘𝑊)‘𝑥) = {(0g‘𝑊)})) |
49 | 42, 48 | syl5ib 243 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g‘𝑊)})) |
50 | 41, 49 | embantd 59 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑁‘𝑥) ⊆ (Base‘𝑊) → (𝑁‘𝑥) = (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) = {(0g‘𝑊)})) |
51 | 34, 50 | syl5bi 241 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (¬ (𝑁‘𝑥) ⊊ (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g‘𝑊)})) |
52 | 51 | necon1ad 2962 |
. . . . . . . . 9
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((ocv‘𝑊)‘𝑥) ≠ {(0g‘𝑊)} → (𝑁‘𝑥) ⊊ (Base‘𝑊))) |
53 | 33, 52 | syld 47 |
. . . . . . . 8
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) ∧ 𝑦 ∈ 𝐵) → (¬ 𝑦 ∈ 𝑥 → (𝑁‘𝑥) ⊊ (Base‘𝑊))) |
54 | 53 | expimpd 454 |
. . . . . . 7
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) → ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥) → (𝑁‘𝑥) ⊊ (Base‘𝑊))) |
55 | 54 | exlimdv 1940 |
. . . . . 6
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) → (∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥) → (𝑁‘𝑥) ⊊ (Base‘𝑊))) |
56 | 18, 55 | mpd 15 |
. . . . 5
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥 ⊊ 𝐵) → (𝑁‘𝑥) ⊊ (Base‘𝑊)) |
57 | 56 | ex 413 |
. . . 4
⊢ (𝐵 ∈ (OBasis‘𝑊) → (𝑥 ⊊ 𝐵 → (𝑁‘𝑥) ⊊ (Base‘𝑊))) |
58 | 57 | alrimiv 1934 |
. . 3
⊢ (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥(𝑥 ⊊ 𝐵 → (𝑁‘𝑥) ⊊ (Base‘𝑊))) |
59 | | obslbs.j |
. . . . . 6
⊢ 𝐽 = (LBasis‘𝑊) |
60 | 2, 59, 5 | islbs3 20415 |
. . . . 5
⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑁‘𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥 ⊊ 𝐵 → (𝑁‘𝑥) ⊊ (Base‘𝑊))))) |
61 | | 3anan32 1096 |
. . . . 5
⊢ ((𝐵 ⊆ (Base‘𝑊) ∧ (𝑁‘𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥 ⊊ 𝐵 → (𝑁‘𝑥) ⊊ (Base‘𝑊))) ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥 ⊊ 𝐵 → (𝑁‘𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁‘𝐵) = (Base‘𝑊))) |
62 | 60, 61 | bitrdi 287 |
. . . 4
⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥 ⊊ 𝐵 → (𝑁‘𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁‘𝐵) = (Base‘𝑊)))) |
63 | 62 | baibd 540 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥 ⊊ 𝐵 → (𝑁‘𝑥) ⊊ (Base‘𝑊)))) → (𝐵 ∈ 𝐽 ↔ (𝑁‘𝐵) = (Base‘𝑊))) |
64 | 16, 3, 58, 63 | syl12anc 834 |
. 2
⊢ (𝐵 ∈ (OBasis‘𝑊) → (𝐵 ∈ 𝐽 ↔ (𝑁‘𝐵) = (Base‘𝑊))) |
65 | 11, 14, 64 | 3bitr4rd 312 |
1
⊢ (𝐵 ∈ (OBasis‘𝑊) → (𝐵 ∈ 𝐽 ↔ (𝑁‘𝐵) ∈ 𝐶)) |