MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obslbs Structured version   Visualization version   GIF version

Theorem obslbs 20422
Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
obslbs.j 𝐽 = (LBasis‘𝑊)
obslbs.n 𝑁 = (LSpan‘𝑊)
obslbs.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
obslbs (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))

Proof of Theorem obslbs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsrcl 20415 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
2 eqid 2801 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
32obsss 20416 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
4 eqid 2801 . . . . . . 7 (ocv‘𝑊) = (ocv‘𝑊)
5 obslbs.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
62, 4, 5ocvlsp 20368 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
71, 3, 6syl2anc 587 . . . . 5 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
87fveq2d 6653 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))
94, 2obs2ocv 20419 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)) = (Base‘𝑊))
108, 9eqtrd 2836 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = (Base‘𝑊))
1110eqeq2d 2812 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) ↔ (𝑁𝐵) = (Base‘𝑊)))
12 obslbs.c . . . 4 𝐶 = (ClSubSp‘𝑊)
134, 12iscss 20375 . . 3 (𝑊 ∈ PreHil → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
141, 13syl 17 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
15 phllvec 20321 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
161, 15syl 17 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LVec)
17 pssnel 4381 . . . . . . 7 (𝑥𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
1817adantl 485 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
19 simpll 766 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ∈ (OBasis‘𝑊))
20 pssss 4026 . . . . . . . . . . . 12 (𝑥𝐵𝑥𝐵)
2120ad2antlr 726 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
22 simpr 488 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
234obselocv 20420 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
2419, 21, 22, 23syl3anc 1368 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
25 eqid 2801 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
2625obsne0 20417 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
2719, 22, 26syl2anc 587 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
28 nelsn 4568 . . . . . . . . . . . 12 (𝑦 ≠ (0g𝑊) → ¬ 𝑦 ∈ {(0g𝑊)})
2927, 28syl 17 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {(0g𝑊)})
30 nelne1 3086 . . . . . . . . . . . 12 ((𝑦 ∈ ((ocv‘𝑊)‘𝑥) ∧ ¬ 𝑦 ∈ {(0g𝑊)}) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)})
3130expcom 417 . . . . . . . . . . 11 𝑦 ∈ {(0g𝑊)} → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3229, 31syl 17 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3324, 32sylbird 263 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
34 npss 4041 . . . . . . . . . . 11 (¬ (𝑁𝑥) ⊊ (Base‘𝑊) ↔ ((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)))
35 phllmod 20322 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
361, 35syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LMod)
3736ad2antrr 725 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ LMod)
383ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ⊆ (Base‘𝑊))
3921, 38sstrd 3928 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ⊆ (Base‘𝑊))
402, 5lspssv 19751 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ⊆ (Base‘𝑊)) → (𝑁𝑥) ⊆ (Base‘𝑊))
4137, 39, 40syl2anc 587 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑁𝑥) ⊆ (Base‘𝑊))
42 fveq2 6649 . . . . . . . . . . . . 13 ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)))
431ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ PreHil)
442, 4, 5ocvlsp 20368 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
4543, 39, 44syl2anc 587 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
462, 4, 25ocv1 20371 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4743, 46syl 17 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4845, 47eqeq12d 2817 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)) ↔ ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
4942, 48syl5ib 247 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5041, 49embantd 59 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5134, 50syl5bi 245 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ (𝑁𝑥) ⊊ (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5251necon1ad 3007 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)} → (𝑁𝑥) ⊊ (Base‘𝑊)))
5333, 52syld 47 . . . . . . . 8 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5453expimpd 457 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ((𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5554exlimdv 1934 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5618, 55mpd 15 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (𝑁𝑥) ⊊ (Base‘𝑊))
5756ex 416 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → (𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5857alrimiv 1928 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
59 obslbs.j . . . . . 6 𝐽 = (LBasis‘𝑊)
602, 59, 5islbs3 19923 . . . . 5 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))))
61 3anan32 1094 . . . . 5 ((𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊)))
6260, 61syl6bb 290 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊))))
6362baibd 543 . . 3 ((𝑊 ∈ LVec ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6416, 3, 58, 63syl12anc 835 . 2 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6511, 14, 643bitr4rd 315 1 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2112  wne 2990  wss 3884  wpss 3885  {csn 4528  cfv 6328  Basecbs 16478  0gc0g 16708  LModclmod 19630  LSpanclspn 19739  LBasisclbs 19842  LVecclvec 19870  PreHilcphl 20316  ocvcocv 20352  ClSubSpccss 20353  OBasiscobs 20394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-grp 18101  df-minusg 18102  df-sbg 18103  df-ghm 18351  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-rnghom 19466  df-drng 19500  df-staf 19612  df-srng 19613  df-lmod 19632  df-lss 19700  df-lsp 19740  df-lmhm 19790  df-lbs 19843  df-lvec 19871  df-sra 19940  df-rgmod 19941  df-phl 20318  df-ocv 20355  df-css 20356  df-obs 20397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator