MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obslbs Structured version   Visualization version   GIF version

Theorem obslbs 21750
Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
obslbs.j 𝐽 = (LBasis‘𝑊)
obslbs.n 𝑁 = (LSpan‘𝑊)
obslbs.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
obslbs (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))

Proof of Theorem obslbs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsrcl 21743 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
2 eqid 2737 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
32obsss 21744 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
4 eqid 2737 . . . . . . 7 (ocv‘𝑊) = (ocv‘𝑊)
5 obslbs.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
62, 4, 5ocvlsp 21694 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
71, 3, 6syl2anc 584 . . . . 5 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
87fveq2d 6910 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))
94, 2obs2ocv 21747 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)) = (Base‘𝑊))
108, 9eqtrd 2777 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = (Base‘𝑊))
1110eqeq2d 2748 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) ↔ (𝑁𝐵) = (Base‘𝑊)))
12 obslbs.c . . . 4 𝐶 = (ClSubSp‘𝑊)
134, 12iscss 21701 . . 3 (𝑊 ∈ PreHil → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
141, 13syl 17 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
15 phllvec 21647 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
161, 15syl 17 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LVec)
17 pssnel 4471 . . . . . . 7 (𝑥𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
1817adantl 481 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
19 simpll 767 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ∈ (OBasis‘𝑊))
20 pssss 4098 . . . . . . . . . . . 12 (𝑥𝐵𝑥𝐵)
2120ad2antlr 727 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
22 simpr 484 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
234obselocv 21748 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
2419, 21, 22, 23syl3anc 1373 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
25 eqid 2737 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
2625obsne0 21745 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
2719, 22, 26syl2anc 584 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
28 nelsn 4666 . . . . . . . . . . . 12 (𝑦 ≠ (0g𝑊) → ¬ 𝑦 ∈ {(0g𝑊)})
2927, 28syl 17 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {(0g𝑊)})
30 nelne1 3039 . . . . . . . . . . . 12 ((𝑦 ∈ ((ocv‘𝑊)‘𝑥) ∧ ¬ 𝑦 ∈ {(0g𝑊)}) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)})
3130expcom 413 . . . . . . . . . . 11 𝑦 ∈ {(0g𝑊)} → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3229, 31syl 17 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3324, 32sylbird 260 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
34 npss 4113 . . . . . . . . . . 11 (¬ (𝑁𝑥) ⊊ (Base‘𝑊) ↔ ((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)))
35 phllmod 21648 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
361, 35syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LMod)
3736ad2antrr 726 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ LMod)
383ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ⊆ (Base‘𝑊))
3921, 38sstrd 3994 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ⊆ (Base‘𝑊))
402, 5lspssv 20981 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ⊆ (Base‘𝑊)) → (𝑁𝑥) ⊆ (Base‘𝑊))
4137, 39, 40syl2anc 584 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑁𝑥) ⊆ (Base‘𝑊))
42 fveq2 6906 . . . . . . . . . . . . 13 ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)))
431ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ PreHil)
442, 4, 5ocvlsp 21694 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
4543, 39, 44syl2anc 584 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
462, 4, 25ocv1 21697 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4743, 46syl 17 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4845, 47eqeq12d 2753 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)) ↔ ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
4942, 48imbitrid 244 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5041, 49embantd 59 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5134, 50biimtrid 242 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ (𝑁𝑥) ⊊ (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5251necon1ad 2957 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)} → (𝑁𝑥) ⊊ (Base‘𝑊)))
5333, 52syld 47 . . . . . . . 8 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5453expimpd 453 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ((𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5554exlimdv 1933 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5618, 55mpd 15 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (𝑁𝑥) ⊊ (Base‘𝑊))
5756ex 412 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → (𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5857alrimiv 1927 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
59 obslbs.j . . . . . 6 𝐽 = (LBasis‘𝑊)
602, 59, 5islbs3 21157 . . . . 5 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))))
61 3anan32 1097 . . . . 5 ((𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊)))
6260, 61bitrdi 287 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊))))
6362baibd 539 . . 3 ((𝑊 ∈ LVec ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6416, 3, 58, 63syl12anc 837 . 2 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6511, 14, 643bitr4rd 312 1 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2940  wss 3951  wpss 3952  {csn 4626  cfv 6561  Basecbs 17247  0gc0g 17484  LModclmod 20858  LSpanclspn 20969  LBasisclbs 21073  LVecclvec 21101  PreHilcphl 21642  ocvcocv 21678  ClSubSpccss 21679  OBasiscobs 21722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-drng 20731  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lmhm 21021  df-lbs 21074  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-phl 21644  df-ocv 21681  df-css 21682  df-obs 21725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator