MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obslbs Structured version   Visualization version   GIF version

Theorem obslbs 20847
Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
obslbs.j 𝐽 = (LBasis‘𝑊)
obslbs.n 𝑁 = (LSpan‘𝑊)
obslbs.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
obslbs (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))

Proof of Theorem obslbs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 obsrcl 20840 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
2 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
32obsss 20841 . . . . . 6 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
4 eqid 2738 . . . . . . 7 (ocv‘𝑊) = (ocv‘𝑊)
5 obslbs.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
62, 4, 5ocvlsp 20793 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
71, 3, 6syl2anc 583 . . . . 5 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘(𝑁𝐵)) = ((ocv‘𝑊)‘𝐵))
87fveq2d 6760 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))
94, 2obs2ocv 20844 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)) = (Base‘𝑊))
108, 9eqtrd 2778 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) = (Base‘𝑊))
1110eqeq2d 2749 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵))) ↔ (𝑁𝐵) = (Base‘𝑊)))
12 obslbs.c . . . 4 𝐶 = (ClSubSp‘𝑊)
134, 12iscss 20800 . . 3 (𝑊 ∈ PreHil → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
141, 13syl 17 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑁𝐵) ∈ 𝐶 ↔ (𝑁𝐵) = ((ocv‘𝑊)‘((ocv‘𝑊)‘(𝑁𝐵)))))
15 phllvec 20746 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
161, 15syl 17 . . 3 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LVec)
17 pssnel 4401 . . . . . . 7 (𝑥𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
1817adantl 481 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥))
19 simpll 763 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ∈ (OBasis‘𝑊))
20 pssss 4026 . . . . . . . . . . . 12 (𝑥𝐵𝑥𝐵)
2120ad2antlr 723 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
22 simpr 484 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
234obselocv 20845 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
2419, 21, 22, 23syl3anc 1369 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) ↔ ¬ 𝑦𝑥))
25 eqid 2738 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
2625obsne0 20842 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
2719, 22, 26syl2anc 583 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ≠ (0g𝑊))
28 nelsn 4598 . . . . . . . . . . . 12 (𝑦 ≠ (0g𝑊) → ¬ 𝑦 ∈ {(0g𝑊)})
2927, 28syl 17 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {(0g𝑊)})
30 nelne1 3040 . . . . . . . . . . . 12 ((𝑦 ∈ ((ocv‘𝑊)‘𝑥) ∧ ¬ 𝑦 ∈ {(0g𝑊)}) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)})
3130expcom 413 . . . . . . . . . . 11 𝑦 ∈ {(0g𝑊)} → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3229, 31syl 17 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑦 ∈ ((ocv‘𝑊)‘𝑥) → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
3324, 32sylbird 259 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → ((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)}))
34 npss 4041 . . . . . . . . . . 11 (¬ (𝑁𝑥) ⊊ (Base‘𝑊) ↔ ((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)))
35 phllmod 20747 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
361, 35syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ LMod)
3736ad2antrr 722 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ LMod)
383ad2antrr 722 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝐵 ⊆ (Base‘𝑊))
3921, 38sstrd 3927 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ⊆ (Base‘𝑊))
402, 5lspssv 20160 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ⊆ (Base‘𝑊)) → (𝑁𝑥) ⊆ (Base‘𝑊))
4137, 39, 40syl2anc 583 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑁𝑥) ⊆ (Base‘𝑊))
42 fveq2 6756 . . . . . . . . . . . . 13 ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)))
431ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑊 ∈ PreHil)
442, 4, 5ocvlsp 20793 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
4543, 39, 44syl2anc 583 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘𝑥))
462, 4, 25ocv1 20796 . . . . . . . . . . . . . . 15 (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4743, 46syl 17 . . . . . . . . . . . . . 14 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((ocv‘𝑊)‘(Base‘𝑊)) = {(0g𝑊)})
4845, 47eqeq12d 2754 . . . . . . . . . . . . 13 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘(𝑁𝑥)) = ((ocv‘𝑊)‘(Base‘𝑊)) ↔ ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
4942, 48syl5ib 243 . . . . . . . . . . . 12 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑁𝑥) = (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5041, 49embantd 59 . . . . . . . . . . 11 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((𝑁𝑥) ⊆ (Base‘𝑊) → (𝑁𝑥) = (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5134, 50syl5bi 241 . . . . . . . . . 10 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ (𝑁𝑥) ⊊ (Base‘𝑊) → ((ocv‘𝑊)‘𝑥) = {(0g𝑊)}))
5251necon1ad 2959 . . . . . . . . 9 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((ocv‘𝑊)‘𝑥) ≠ {(0g𝑊)} → (𝑁𝑥) ⊊ (Base‘𝑊)))
5333, 52syld 47 . . . . . . . 8 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (¬ 𝑦𝑥 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5453expimpd 453 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → ((𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5554exlimdv 1937 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝑥) → (𝑁𝑥) ⊊ (Base‘𝑊)))
5618, 55mpd 15 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑥𝐵) → (𝑁𝑥) ⊊ (Base‘𝑊))
5756ex 412 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → (𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
5857alrimiv 1931 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))
59 obslbs.j . . . . . 6 𝐽 = (LBasis‘𝑊)
602, 59, 5islbs3 20332 . . . . 5 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))))
61 3anan32 1095 . . . . 5 ((𝐵 ⊆ (Base‘𝑊) ∧ (𝑁𝐵) = (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊)))
6260, 61bitrdi 286 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ ((𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊))) ∧ (𝑁𝐵) = (Base‘𝑊))))
6362baibd 539 . . 3 ((𝑊 ∈ LVec ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑥(𝑥𝐵 → (𝑁𝑥) ⊊ (Base‘𝑊)))) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6416, 3, 58, 63syl12anc 833 . 2 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) = (Base‘𝑊)))
6511, 14, 643bitr4rd 311 1 (𝐵 ∈ (OBasis‘𝑊) → (𝐵𝐽 ↔ (𝑁𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  wne 2942  wss 3883  wpss 3884  {csn 4558  cfv 6418  Basecbs 16840  0gc0g 17067  LModclmod 20038  LSpanclspn 20148  LBasisclbs 20251  LVecclvec 20279  PreHilcphl 20741  ocvcocv 20777  ClSubSpccss 20778  OBasiscobs 20819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-rnghom 19874  df-drng 19908  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lbs 20252  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-phl 20743  df-ocv 20780  df-css 20781  df-obs 20822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator