MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau2 Structured version   Visualization version   GIF version

Theorem ipcau2 25282
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space built from a pre-Hilbert space with certain properties. The main theorem is ipcau 25286. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
ipcau2.n 𝑁 = (norm‘𝐺)
ipcau2.c 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
ipcau2.3 (𝜑𝑋𝑉)
ipcau2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
ipcau2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝐶   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐾(𝑥)   𝑁(𝑥)

Proof of Theorem ipcau2
StepHypRef Expression
1 oveq2 7439 . . . . . . 7 (𝑌 = (0g𝑊) → (𝑋 , 𝑌) = (𝑋 , (0g𝑊)))
21oveq1d 7446 . . . . . 6 (𝑌 = (0g𝑊) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) = ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)))
32breq1d 5158 . . . . 5 (𝑌 = (0g𝑊) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)) ↔ ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
4 tcphval.n . . . . . . . . . . . . 13 𝐺 = (toℂPreHil‘𝑊)
5 tcphcph.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑊)
6 tcphcph.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
7 tcphcph.1 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ PreHil)
8 tcphcph.2 . . . . . . . . . . . . 13 (𝜑𝐹 = (ℂflds 𝐾))
94, 5, 6, 7, 8phclm 25280 . . . . . . . . . . . 12 (𝜑𝑊 ∈ ℂMod)
10 tcphcph.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
116, 10clmsscn 25126 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
129, 11syl 17 . . . . . . . . . . 11 (𝜑𝐾 ⊆ ℂ)
13 ipcau2.3 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
14 ipcau2.4 . . . . . . . . . . . 12 (𝜑𝑌𝑉)
15 tcphcph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
166, 15, 5, 10ipcl 21669 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
177, 13, 14, 16syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
1812, 17sseldd 3996 . . . . . . . . . 10 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
1918adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ ℂ)
206, 15, 5, 10ipcl 21669 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
217, 14, 13, 20syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
2212, 21sseldd 3996 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
2322adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ ℂ)
244, 5, 6, 7, 8, 15tcphcphlem3 25281 . . . . . . . . . . . 12 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
2514, 24mpdan 687 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2625recnd 11287 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
2726adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℂ)
286clm0 25119 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
299, 28syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 = (0g𝐹))
3029eqeq2d 2746 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ (𝑌 , 𝑌) = (0g𝐹)))
31 eqid 2735 . . . . . . . . . . . . . 14 (0g𝐹) = (0g𝐹)
32 eqid 2735 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
336, 15, 5, 31, 32ipeq0 21674 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑌𝑉) → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
347, 14, 33syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
3530, 34bitrd 279 . . . . . . . . . . 11 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ 𝑌 = (0g𝑊)))
3635necon3bid 2983 . . . . . . . . . 10 (𝜑 → ((𝑌 , 𝑌) ≠ 0 ↔ 𝑌 ≠ (0g𝑊)))
3736biimpar 477 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ≠ 0)
3819, 23, 27, 37divassd 12076 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))))
39 ipcau2.c . . . . . . . . 9 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
4039oveq2i 7442 . . . . . . . 8 ((𝑋 , 𝑌) · 𝐶) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
4138, 40eqtr4di 2793 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · 𝐶))
42 oveq12 7440 . . . . . . . . . . . 12 ((𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∧ 𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4342anidms 566 . . . . . . . . . . 11 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4443breq2d 5160 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)))))
45 tcphcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
4645ralrimiva 3144 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
48 phllmod 21666 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
497, 48syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
5049adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
5113adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑋𝑉)
5239fveq2i 6910 . . . . . . . . . . . . . . 15 (∗‘𝐶) = (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌)))
5323, 27, 37cjdivd 15259 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌))) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
5452, 53eqtrid 2787 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
558fveq2d 6911 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (*𝑟𝐹) = (*𝑟‘(ℂflds 𝐾)))
5610fvexi 6921 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
57 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (ℂflds 𝐾) = (ℂflds 𝐾)
58 cnfldcj 21391 . . . . . . . . . . . . . . . . . . . . . . 23 ∗ = (*𝑟‘ℂfld)
5957, 58ressstarv 17354 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ V → ∗ = (*𝑟‘(ℂflds 𝐾)))
6056, 59ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ∗ = (*𝑟‘(ℂflds 𝐾))
6155, 60eqtr4di 2793 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (*𝑟𝐹) = ∗)
6261fveq1d 6909 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (∗‘(𝑋 , 𝑌)))
63 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (*𝑟𝐹) = (*𝑟𝐹)
646, 15, 5, 63ipcj 21670 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
657, 13, 14, 64syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6662, 65eqtr3d 2777 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6766adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6867fveq2d 6911 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (∗‘(𝑌 , 𝑋)))
6919cjcjd 15235 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (𝑋 , 𝑌))
7068, 69eqtr3d 2777 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑋)) = (𝑋 , 𝑌))
7125adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℝ)
7271cjred 15262 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑌)) = (𝑌 , 𝑌))
7370, 72oveq12d 7449 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))) = ((𝑋 , 𝑌) / (𝑌 , 𝑌)))
7419, 27, 37divrecd 12044 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
7554, 73, 743eqtrd 2779 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
769adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ ℂMod)
7717adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ 𝐾)
786, 15, 5, 10ipcl 21669 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
797, 14, 14, 78syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
8079adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ 𝐾)
818adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 = (ℂflds 𝐾))
82 phllvec 21665 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
837, 82syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ LVec)
846lvecdrng 21122 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ DivRing)
8685adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 ∈ DivRing)
8710, 81, 86cphreccllem 25226 . . . . . . . . . . . . . . 15 (((𝜑𝑌 ≠ (0g𝑊)) ∧ (𝑌 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑌) ≠ 0) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
8880, 37, 87mpd3an23 1462 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
896, 10clmmcl 25132 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9076, 77, 88, 89syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9175, 90eqeltrd 2839 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) ∈ 𝐾)
9214adantr 480 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑌𝑉)
93 eqid 2735 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
945, 6, 93, 10lmodvscl 20893 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (∗‘𝐶) ∈ 𝐾𝑌𝑉) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
9550, 91, 92, 94syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
96 eqid 2735 . . . . . . . . . . . 12 (-g𝑊) = (-g𝑊)
975, 96lmodvsubcl 20922 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9850, 51, 95, 97syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9944, 47, 98rspcdva 3623 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
100 eqid 2735 . . . . . . . . . . 11 (-g𝐹) = (-g𝐹)
101 eqid 2735 . . . . . . . . . . 11 (+g𝐹) = (+g𝐹)
1027adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ PreHil)
1036, 15, 5, 96, 100, 101, 102, 51, 95, 51, 95ip2subdi 21680 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))))
10481fveq2d 6911 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = (+g‘(ℂflds 𝐾)))
105 cnfldadd 21388 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
10657, 105ressplusg 17336 . . . . . . . . . . . . . 14 (𝐾 ∈ V → + = (+g‘(ℂflds 𝐾)))
10756, 106ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(ℂflds 𝐾))
108104, 107eqtr4di 2793 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = + )
109 eqidd 2736 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) = (𝑋 , 𝑋))
110 eqid 2735 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
1116, 15, 5, 10, 93, 110ipass 21681 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
112102, 91, 92, 95, 111syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
11381fveq2d 6911 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = (.r‘(ℂflds 𝐾)))
114 cnfldmul 21390 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
11557, 114ressmulr 17353 . . . . . . . . . . . . . . . 16 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
11656, 115ax-mp 5 . . . . . . . . . . . . . . 15 · = (.r‘(ℂflds 𝐾))
117113, 116eqtr4di 2793 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = · )
118 eqidd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = (∗‘𝐶))
11923, 27, 37divrecd 12044 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12039, 119eqtrid 2787 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶 = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12121adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ 𝐾)
1226, 10clmmcl 25132 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂMod ∧ (𝑌 , 𝑋) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
12376, 121, 88, 122syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
124120, 123eqeltrd 2839 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶𝐾)
1256, 15, 5, 10, 93, 110, 63ipassr2 21683 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ (𝑌𝑉𝑌𝑉𝐶𝐾)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
126102, 92, 92, 124, 125syl13anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
127117oveqd 7448 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = ((𝑌 , 𝑌) · 𝐶))
12839oveq2i 7442 . . . . . . . . . . . . . . . . 17 ((𝑌 , 𝑌) · 𝐶) = ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
12923, 27, 37divcan2d 12043 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) = (𝑌 , 𝑋))
130128, 129eqtrid 2787 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · 𝐶) = (𝑌 , 𝑋))
131127, 130eqtrd 2775 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , 𝑋))
13261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (*𝑟𝐹) = ∗)
133132fveq1d 6909 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((*𝑟𝐹)‘𝐶) = (∗‘𝐶))
134133oveq1d 7446 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌) = ((∗‘𝐶)( ·𝑠𝑊)𝑌))
135134oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
136126, 131, 1353eqtr3rd 2784 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , 𝑋))
137117, 118, 136oveq123d 7452 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((∗‘𝐶) · (𝑌 , 𝑋)))
138112, 137eqtrd 2775 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
139108, 109, 138oveq123d 7452 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))))
1406, 15, 5, 10, 93, 110, 63ipassr2 21683 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ (𝑋𝑉𝑌𝑉𝐶𝐾)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
141102, 51, 92, 124, 140syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
142117oveqd 7448 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = ((𝑋 , 𝑌) · 𝐶))
143134oveq2d 7447 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
144141, 142, 1433eqtr3rd 2784 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((𝑋 , 𝑌) · 𝐶))
1456, 15, 5, 10, 93, 110ipass 21681 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉𝑋𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
146102, 91, 92, 51, 145syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
147117oveqd 7448 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
148146, 147eqtrd 2775 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶) · (𝑌 , 𝑋)))
149108, 144, 148oveq123d 7452 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋)) = (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))
150139, 149oveq12d 7449 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1516, 15, 5, 10ipcl 21669 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
152102, 51, 51, 151syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ 𝐾)
1536, 10clmmcl 25132 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (∗‘𝐶) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
15476, 91, 121, 153syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
1556, 10clmacl 25131 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
15676, 152, 154, 155syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1576, 10clmmcl 25132 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾𝐶𝐾) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
15876, 77, 124, 157syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
1596, 10clmacl 25131 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
16076, 158, 154, 159syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1616, 10clmsub 25127 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾 ∧ (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
16276, 156, 160, 161syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1634, 5, 6, 7, 8, 15tcphcphlem3 25281 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
16413, 163mpdan 687 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
165164recnd 11287 . . . . . . . . . . . . 13 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
166165adantr 480 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℂ)
16718absvalsqd 15478 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))))
16866oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
169167, 168eqtrd 2775 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
17018abscld 15472 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
171170resqcld 14162 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ∈ ℝ)
172169, 171eqeltrrd 2840 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
173172adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
174173, 71, 37redivcld 12093 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ∈ ℝ)
17541, 174eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℝ)
176175recnd 11287 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℂ)
17776, 11syl 17 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐾 ⊆ ℂ)
178177, 154sseldd 3996 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ ℂ)
179166, 176, 178pnpcan2d 11656 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
180162, 179eqtr3d 2777 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
181103, 150, 1803eqtrd 2779 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
18299, 181breqtrd 5174 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
183164adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℝ)
184183, 175subge0d 11851 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)) ↔ ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋)))
185182, 184mpbid 232 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋))
18641, 185eqbrtrd 5170 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋))
187 oveq12 7440 . . . . . . . . . . . 12 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
188187anidms 566 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
189188breq2d 5160 . . . . . . . . . 10 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
190189, 46, 14rspcdva 3623 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑌 , 𝑌))
191190adantr 480 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ (𝑌 , 𝑌))
19271, 191, 37ne0gt0d 11396 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → 0 < (𝑌 , 𝑌))
193 ledivmul2 12145 . . . . . . 7 ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ ∧ (𝑋 , 𝑋) ∈ ℝ ∧ ((𝑌 , 𝑌) ∈ ℝ ∧ 0 < (𝑌 , 𝑌))) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
194173, 183, 71, 192, 193syl112anc 1373 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
195186, 194mpbid 232 . . . . 5 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
1966, 15, 5, 31, 32ip0r 21673 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑋𝑉) → (𝑋 , (0g𝑊)) = (0g𝐹))
1977, 13, 196syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋 , (0g𝑊)) = (0g𝐹))
198197, 29eqtr4d 2778 . . . . . . . 8 (𝜑 → (𝑋 , (0g𝑊)) = 0)
199198oveq1d 7446 . . . . . . 7 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = (0 · (𝑌 , 𝑋)))
20022mul02d 11457 . . . . . . 7 (𝜑 → (0 · (𝑌 , 𝑋)) = 0)
201199, 200eqtrd 2775 . . . . . 6 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = 0)
202 oveq12 7440 . . . . . . . . . 10 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
203202anidms 566 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
204203breq2d 5160 . . . . . . . 8 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
205204, 46, 13rspcdva 3623 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 , 𝑋))
206164, 25, 205, 190mulge0d 11838 . . . . . 6 (𝜑 → 0 ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
207201, 206eqbrtrd 5170 . . . . 5 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
2083, 195, 207pm2.61ne 3025 . . . 4 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
209164, 205resqrtcld 15453 . . . . . . 7 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
210209recnd 11287 . . . . . 6 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
21125, 190resqrtcld 15453 . . . . . . 7 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
212211recnd 11287 . . . . . 6 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
213210, 212sqmuld 14195 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)))
214165sqsqrtd 15475 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
21526sqsqrtd 15475 . . . . . 6 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
216214, 215oveq12d 7449 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
217213, 216eqtrd 2775 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
218208, 169, 2173brtr4d 5180 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2))
219209, 211remulcld 11289 . . . 4 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
22018absge0d 15480 . . . 4 (𝜑 → 0 ≤ (abs‘(𝑋 , 𝑌)))
221164, 205sqrtge0d 15456 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
22225, 190sqrtge0d 15456 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
223209, 211, 221, 222mulge0d 11838 . . . 4 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
224170, 219, 220, 223le2sqd 14293 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2)))
225218, 224mpbird 257 . 2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
226 lmodgrp 20882 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
22749, 226syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
228 ipcau2.n . . . . 5 𝑁 = (norm‘𝐺)
2294, 228, 5, 15tcphnmval 25277 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
230227, 13, 229syl2anc 584 . . 3 (𝜑 → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
2314, 228, 5, 15tcphnmval 25277 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
232227, 14, 231syl2anc 584 . . 3 (𝜑 → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
233230, 232oveq12d 7449 . 2 (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
234225, 233breqtrrd 5176 1 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  cexp 14099  ccj 15132  csqrt 15269  abscabs 15270  Basecbs 17245  s cress 17274  +gcplusg 17298  .rcmulr 17299  *𝑟cstv 17300  Scalarcsca 17301   ·𝑠 cvsca 17302  ·𝑖cip 17303  0gc0g 17486  Grpcgrp 18964  -gcsg 18966  DivRingcdr 20746  LModclmod 20875  LVecclvec 21119  fldccnfld 21382  PreHilcphl 21660  normcnm 24605  ℂModcclm 25109  toℂPreHilctcph 25215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-staf 20857  df-srng 20858  df-lmod 20877  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-phl 21662  df-nm 24611  df-tng 24613  df-clm 25110  df-tcph 25217
This theorem is referenced by:  tcphcphlem1  25283  ipcau  25286
  Copyright terms: Public domain W3C validator