MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau2 Structured version   Visualization version   GIF version

Theorem ipcau2 25171
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space built from a pre-Hilbert space with certain properties. The main theorem is ipcau 25175. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
ipcau2.n 𝑁 = (norm‘𝐺)
ipcau2.c 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
ipcau2.3 (𝜑𝑋𝑉)
ipcau2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
ipcau2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝐶   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐾(𝑥)   𝑁(𝑥)

Proof of Theorem ipcau2
StepHypRef Expression
1 oveq2 7363 . . . . . . 7 (𝑌 = (0g𝑊) → (𝑋 , 𝑌) = (𝑋 , (0g𝑊)))
21oveq1d 7370 . . . . . 6 (𝑌 = (0g𝑊) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) = ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)))
32breq1d 5105 . . . . 5 (𝑌 = (0g𝑊) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)) ↔ ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
4 tcphval.n . . . . . . . . . . . . 13 𝐺 = (toℂPreHil‘𝑊)
5 tcphcph.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑊)
6 tcphcph.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
7 tcphcph.1 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ PreHil)
8 tcphcph.2 . . . . . . . . . . . . 13 (𝜑𝐹 = (ℂflds 𝐾))
94, 5, 6, 7, 8phclm 25169 . . . . . . . . . . . 12 (𝜑𝑊 ∈ ℂMod)
10 tcphcph.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
116, 10clmsscn 25016 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
129, 11syl 17 . . . . . . . . . . 11 (𝜑𝐾 ⊆ ℂ)
13 ipcau2.3 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
14 ipcau2.4 . . . . . . . . . . . 12 (𝜑𝑌𝑉)
15 tcphcph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
166, 15, 5, 10ipcl 21580 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
177, 13, 14, 16syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
1812, 17sseldd 3932 . . . . . . . . . 10 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
1918adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ ℂ)
206, 15, 5, 10ipcl 21580 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
217, 14, 13, 20syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
2212, 21sseldd 3932 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
2322adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ ℂ)
244, 5, 6, 7, 8, 15tcphcphlem3 25170 . . . . . . . . . . . 12 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
2514, 24mpdan 687 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2625recnd 11150 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
2726adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℂ)
286clm0 25009 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
299, 28syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 = (0g𝐹))
3029eqeq2d 2744 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ (𝑌 , 𝑌) = (0g𝐹)))
31 eqid 2733 . . . . . . . . . . . . . 14 (0g𝐹) = (0g𝐹)
32 eqid 2733 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
336, 15, 5, 31, 32ipeq0 21585 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑌𝑉) → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
347, 14, 33syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
3530, 34bitrd 279 . . . . . . . . . . 11 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ 𝑌 = (0g𝑊)))
3635necon3bid 2974 . . . . . . . . . 10 (𝜑 → ((𝑌 , 𝑌) ≠ 0 ↔ 𝑌 ≠ (0g𝑊)))
3736biimpar 477 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ≠ 0)
3819, 23, 27, 37divassd 11942 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))))
39 ipcau2.c . . . . . . . . 9 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
4039oveq2i 7366 . . . . . . . 8 ((𝑋 , 𝑌) · 𝐶) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
4138, 40eqtr4di 2786 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · 𝐶))
42 oveq12 7364 . . . . . . . . . . . 12 ((𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∧ 𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4342anidms 566 . . . . . . . . . . 11 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4443breq2d 5107 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)))))
45 tcphcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
4645ralrimiva 3126 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
48 phllmod 21577 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
497, 48syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
5049adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
5113adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑋𝑉)
5239fveq2i 6834 . . . . . . . . . . . . . . 15 (∗‘𝐶) = (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌)))
5323, 27, 37cjdivd 15140 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌))) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
5452, 53eqtrid 2780 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
558fveq2d 6835 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (*𝑟𝐹) = (*𝑟‘(ℂflds 𝐾)))
5610fvexi 6845 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
57 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (ℂflds 𝐾) = (ℂflds 𝐾)
58 cnfldcj 21310 . . . . . . . . . . . . . . . . . . . . . . 23 ∗ = (*𝑟‘ℂfld)
5957, 58ressstarv 17222 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ V → ∗ = (*𝑟‘(ℂflds 𝐾)))
6056, 59ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ∗ = (*𝑟‘(ℂflds 𝐾))
6155, 60eqtr4di 2786 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (*𝑟𝐹) = ∗)
6261fveq1d 6833 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (∗‘(𝑋 , 𝑌)))
63 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (*𝑟𝐹) = (*𝑟𝐹)
646, 15, 5, 63ipcj 21581 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
657, 13, 14, 64syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6662, 65eqtr3d 2770 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6766adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6867fveq2d 6835 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (∗‘(𝑌 , 𝑋)))
6919cjcjd 15116 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (𝑋 , 𝑌))
7068, 69eqtr3d 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑋)) = (𝑋 , 𝑌))
7125adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℝ)
7271cjred 15143 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑌)) = (𝑌 , 𝑌))
7370, 72oveq12d 7373 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))) = ((𝑋 , 𝑌) / (𝑌 , 𝑌)))
7419, 27, 37divrecd 11910 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
7554, 73, 743eqtrd 2772 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
769adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ ℂMod)
7717adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ 𝐾)
786, 15, 5, 10ipcl 21580 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
797, 14, 14, 78syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
8079adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ 𝐾)
818adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 = (ℂflds 𝐾))
82 phllvec 21576 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
837, 82syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ LVec)
846lvecdrng 21049 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ DivRing)
8685adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 ∈ DivRing)
8710, 81, 86cphreccllem 25115 . . . . . . . . . . . . . . 15 (((𝜑𝑌 ≠ (0g𝑊)) ∧ (𝑌 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑌) ≠ 0) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
8880, 37, 87mpd3an23 1465 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
896, 10clmmcl 25022 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9076, 77, 88, 89syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9175, 90eqeltrd 2833 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) ∈ 𝐾)
9214adantr 480 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑌𝑉)
93 eqid 2733 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
945, 6, 93, 10lmodvscl 20821 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (∗‘𝐶) ∈ 𝐾𝑌𝑉) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
9550, 91, 92, 94syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
96 eqid 2733 . . . . . . . . . . . 12 (-g𝑊) = (-g𝑊)
975, 96lmodvsubcl 20850 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9850, 51, 95, 97syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9944, 47, 98rspcdva 3575 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
100 eqid 2733 . . . . . . . . . . 11 (-g𝐹) = (-g𝐹)
101 eqid 2733 . . . . . . . . . . 11 (+g𝐹) = (+g𝐹)
1027adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ PreHil)
1036, 15, 5, 96, 100, 101, 102, 51, 95, 51, 95ip2subdi 21591 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))))
10481fveq2d 6835 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = (+g‘(ℂflds 𝐾)))
105 cnfldadd 21307 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
10657, 105ressplusg 17205 . . . . . . . . . . . . . 14 (𝐾 ∈ V → + = (+g‘(ℂflds 𝐾)))
10756, 106ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(ℂflds 𝐾))
108104, 107eqtr4di 2786 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = + )
109 eqidd 2734 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) = (𝑋 , 𝑋))
110 eqid 2733 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
1116, 15, 5, 10, 93, 110ipass 21592 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
112102, 91, 92, 95, 111syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
11381fveq2d 6835 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = (.r‘(ℂflds 𝐾)))
114 cnfldmul 21309 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
11557, 114ressmulr 17221 . . . . . . . . . . . . . . . 16 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
11656, 115ax-mp 5 . . . . . . . . . . . . . . 15 · = (.r‘(ℂflds 𝐾))
117113, 116eqtr4di 2786 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = · )
118 eqidd 2734 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = (∗‘𝐶))
11923, 27, 37divrecd 11910 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12039, 119eqtrid 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶 = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12121adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ 𝐾)
1226, 10clmmcl 25022 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂMod ∧ (𝑌 , 𝑋) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
12376, 121, 88, 122syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
124120, 123eqeltrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶𝐾)
1256, 15, 5, 10, 93, 110, 63ipassr2 21594 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ (𝑌𝑉𝑌𝑉𝐶𝐾)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
126102, 92, 92, 124, 125syl13anc 1374 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
127117oveqd 7372 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = ((𝑌 , 𝑌) · 𝐶))
12839oveq2i 7366 . . . . . . . . . . . . . . . . 17 ((𝑌 , 𝑌) · 𝐶) = ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
12923, 27, 37divcan2d 11909 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) = (𝑌 , 𝑋))
130128, 129eqtrid 2780 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · 𝐶) = (𝑌 , 𝑋))
131127, 130eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , 𝑋))
13261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (*𝑟𝐹) = ∗)
133132fveq1d 6833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((*𝑟𝐹)‘𝐶) = (∗‘𝐶))
134133oveq1d 7370 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌) = ((∗‘𝐶)( ·𝑠𝑊)𝑌))
135134oveq2d 7371 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
136126, 131, 1353eqtr3rd 2777 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , 𝑋))
137117, 118, 136oveq123d 7376 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((∗‘𝐶) · (𝑌 , 𝑋)))
138112, 137eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
139108, 109, 138oveq123d 7376 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))))
1406, 15, 5, 10, 93, 110, 63ipassr2 21594 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ (𝑋𝑉𝑌𝑉𝐶𝐾)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
141102, 51, 92, 124, 140syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
142117oveqd 7372 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = ((𝑋 , 𝑌) · 𝐶))
143134oveq2d 7371 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
144141, 142, 1433eqtr3rd 2777 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((𝑋 , 𝑌) · 𝐶))
1456, 15, 5, 10, 93, 110ipass 21592 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉𝑋𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
146102, 91, 92, 51, 145syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
147117oveqd 7372 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
148146, 147eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶) · (𝑌 , 𝑋)))
149108, 144, 148oveq123d 7376 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋)) = (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))
150139, 149oveq12d 7373 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1516, 15, 5, 10ipcl 21580 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
152102, 51, 51, 151syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ 𝐾)
1536, 10clmmcl 25022 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (∗‘𝐶) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
15476, 91, 121, 153syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
1556, 10clmacl 25021 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
15676, 152, 154, 155syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1576, 10clmmcl 25022 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾𝐶𝐾) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
15876, 77, 124, 157syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
1596, 10clmacl 25021 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
16076, 158, 154, 159syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1616, 10clmsub 25017 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾 ∧ (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
16276, 156, 160, 161syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1634, 5, 6, 7, 8, 15tcphcphlem3 25170 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
16413, 163mpdan 687 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
165164recnd 11150 . . . . . . . . . . . . 13 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
166165adantr 480 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℂ)
16718absvalsqd 15362 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))))
16866oveq2d 7371 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
169167, 168eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
17018abscld 15356 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
171170resqcld 14042 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ∈ ℝ)
172169, 171eqeltrrd 2834 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
173172adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
174173, 71, 37redivcld 11959 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ∈ ℝ)
17541, 174eqeltrrd 2834 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℝ)
176175recnd 11150 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℂ)
17776, 11syl 17 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐾 ⊆ ℂ)
178177, 154sseldd 3932 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ ℂ)
179166, 176, 178pnpcan2d 11520 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
180162, 179eqtr3d 2770 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
181103, 150, 1803eqtrd 2772 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
18299, 181breqtrd 5121 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
183164adantr 480 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℝ)
184183, 175subge0d 11717 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)) ↔ ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋)))
185182, 184mpbid 232 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋))
18641, 185eqbrtrd 5117 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋))
187 oveq12 7364 . . . . . . . . . . . 12 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
188187anidms 566 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
189188breq2d 5107 . . . . . . . . . 10 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
190189, 46, 14rspcdva 3575 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑌 , 𝑌))
191190adantr 480 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ (𝑌 , 𝑌))
19271, 191, 37ne0gt0d 11260 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → 0 < (𝑌 , 𝑌))
193 ledivmul2 12011 . . . . . . 7 ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ ∧ (𝑋 , 𝑋) ∈ ℝ ∧ ((𝑌 , 𝑌) ∈ ℝ ∧ 0 < (𝑌 , 𝑌))) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
194173, 183, 71, 192, 193syl112anc 1376 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
195186, 194mpbid 232 . . . . 5 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
1966, 15, 5, 31, 32ip0r 21584 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑋𝑉) → (𝑋 , (0g𝑊)) = (0g𝐹))
1977, 13, 196syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋 , (0g𝑊)) = (0g𝐹))
198197, 29eqtr4d 2771 . . . . . . . 8 (𝜑 → (𝑋 , (0g𝑊)) = 0)
199198oveq1d 7370 . . . . . . 7 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = (0 · (𝑌 , 𝑋)))
20022mul02d 11321 . . . . . . 7 (𝜑 → (0 · (𝑌 , 𝑋)) = 0)
201199, 200eqtrd 2768 . . . . . 6 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = 0)
202 oveq12 7364 . . . . . . . . . 10 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
203202anidms 566 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
204203breq2d 5107 . . . . . . . 8 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
205204, 46, 13rspcdva 3575 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 , 𝑋))
206164, 25, 205, 190mulge0d 11704 . . . . . 6 (𝜑 → 0 ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
207201, 206eqbrtrd 5117 . . . . 5 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
2083, 195, 207pm2.61ne 3015 . . . 4 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
209164, 205resqrtcld 15335 . . . . . . 7 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
210209recnd 11150 . . . . . 6 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
21125, 190resqrtcld 15335 . . . . . . 7 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
212211recnd 11150 . . . . . 6 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
213210, 212sqmuld 14075 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)))
214165sqsqrtd 15359 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
21526sqsqrtd 15359 . . . . . 6 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
216214, 215oveq12d 7373 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
217213, 216eqtrd 2768 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
218208, 169, 2173brtr4d 5127 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2))
219209, 211remulcld 11152 . . . 4 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
22018absge0d 15364 . . . 4 (𝜑 → 0 ≤ (abs‘(𝑋 , 𝑌)))
221164, 205sqrtge0d 15338 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
22225, 190sqrtge0d 15338 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
223209, 211, 221, 222mulge0d 11704 . . . 4 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
224170, 219, 220, 223le2sqd 14174 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2)))
225218, 224mpbird 257 . 2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
226 lmodgrp 20810 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
22749, 226syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
228 ipcau2.n . . . . 5 𝑁 = (norm‘𝐺)
2294, 228, 5, 15tcphnmval 25166 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
230227, 13, 229syl2anc 584 . . 3 (𝜑 → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
2314, 228, 5, 15tcphnmval 25166 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
232227, 14, 231syl2anc 584 . . 3 (𝜑 → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
233230, 232oveq12d 7373 . 2 (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
234225, 233breqtrrd 5123 1 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wral 3049  Vcvv 3438  wss 3899   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021   < clt 11156  cle 11157  cmin 11354   / cdiv 11784  2c2 12190  cexp 13978  ccj 15013  csqrt 15150  abscabs 15151  Basecbs 17130  s cress 17151  +gcplusg 17171  .rcmulr 17172  *𝑟cstv 17173  Scalarcsca 17174   ·𝑠 cvsca 17175  ·𝑖cip 17176  0gc0g 17353  Grpcgrp 18856  -gcsg 18858  DivRingcdr 20654  LModclmod 20803  LVecclvec 21046  fldccnfld 21301  PreHilcphl 21571  normcnm 24501  ℂModcclm 24999  toℂPreHilctcph 25104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-rp 12901  df-fz 13418  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19046  df-ghm 19135  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-rhm 20400  df-subrng 20471  df-subrg 20495  df-drng 20656  df-staf 20764  df-srng 20765  df-lmod 20805  df-lmhm 20966  df-lvec 21047  df-sra 21117  df-rgmod 21118  df-cnfld 21302  df-phl 21573  df-nm 24507  df-tng 24509  df-clm 25000  df-tcph 25106
This theorem is referenced by:  tcphcphlem1  25172  ipcau  25175
  Copyright terms: Public domain W3C validator