Proof of Theorem ipcau2
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑌 = (0g‘𝑊) → (𝑋 , 𝑌) = (𝑋 , (0g‘𝑊))) |
2 | 1 | oveq1d 7270 |
. . . . . 6
⊢ (𝑌 = (0g‘𝑊) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) = ((𝑋 , (0g‘𝑊)) · (𝑌 , 𝑋))) |
3 | 2 | breq1d 5080 |
. . . . 5
⊢ (𝑌 = (0g‘𝑊) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)) ↔ ((𝑋 , (0g‘𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))) |
4 | | tcphval.n |
. . . . . . . . . . . . 13
⊢ 𝐺 = (toℂPreHil‘𝑊) |
5 | | tcphcph.v |
. . . . . . . . . . . . 13
⊢ 𝑉 = (Base‘𝑊) |
6 | | tcphcph.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (Scalar‘𝑊) |
7 | | tcphcph.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 ∈ PreHil) |
8 | | tcphcph.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 = (ℂfld
↾s 𝐾)) |
9 | 4, 5, 6, 7, 8 | phclm 24301 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ ℂMod) |
10 | | tcphcph.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (Base‘𝐹) |
11 | 6, 10 | clmsscn 24148 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆
ℂ) |
12 | 9, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ⊆ ℂ) |
13 | | ipcau2.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
14 | | ipcau2.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
15 | | tcphcph.h |
. . . . . . . . . . . . 13
⊢ , =
(·𝑖‘𝑊) |
16 | 6, 15, 5, 10 | ipcl 20750 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 , 𝑌) ∈ 𝐾) |
17 | 7, 13, 14, 16 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 , 𝑌) ∈ 𝐾) |
18 | 12, 17 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 , 𝑌) ∈ ℂ) |
19 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 , 𝑌) ∈ ℂ) |
20 | 6, 15, 5, 10 | ipcl 20750 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑌 , 𝑋) ∈ 𝐾) |
21 | 7, 14, 13, 20 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌 , 𝑋) ∈ 𝐾) |
22 | 12, 21 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 , 𝑋) ∈ ℂ) |
23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 , 𝑋) ∈ ℂ) |
24 | 4, 5, 6, 7, 8, 15 | tcphcphlem3 24302 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ ℝ) |
25 | 14, 24 | mpdan 683 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℝ) |
26 | 25 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℂ) |
27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 , 𝑌) ∈ ℂ) |
28 | 6 | clm0 24141 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ ℂMod → 0 =
(0g‘𝐹)) |
29 | 9, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 =
(0g‘𝐹)) |
30 | 29 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑌 , 𝑌) = 0 ↔ (𝑌 , 𝑌) = (0g‘𝐹))) |
31 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐹) = (0g‘𝐹) |
32 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑊) = (0g‘𝑊) |
33 | 6, 15, 5, 31, 32 | ipeq0 20755 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉) → ((𝑌 , 𝑌) = (0g‘𝐹) ↔ 𝑌 = (0g‘𝑊))) |
34 | 7, 14, 33 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑌 , 𝑌) = (0g‘𝐹) ↔ 𝑌 = (0g‘𝑊))) |
35 | 30, 34 | bitrd 278 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑌 , 𝑌) = 0 ↔ 𝑌 = (0g‘𝑊))) |
36 | 35 | necon3bid 2987 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑌 , 𝑌) ≠ 0 ↔ 𝑌 ≠ (0g‘𝑊))) |
37 | 36 | biimpar 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 , 𝑌) ≠ 0) |
38 | 19, 23, 27, 37 | divassd 11716 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))) |
39 | | ipcau2.c |
. . . . . . . . 9
⊢ 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌)) |
40 | 39 | oveq2i 7266 |
. . . . . . . 8
⊢ ((𝑋 , 𝑌) · 𝐶) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) |
41 | 38, 40 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · 𝐶)) |
42 | | oveq12 7264 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) ∧ 𝑥 = (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌))) → (𝑥 , 𝑥) = ((𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) , (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)))) |
43 | 42 | anidms 566 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) → (𝑥 , 𝑥) = ((𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) , (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)))) |
44 | 43 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) , (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌))))) |
45 | | tcphcph.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
46 | 45 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
47 | 46 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
48 | | phllmod 20747 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
49 | 7, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ LMod) |
50 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝑊 ∈ LMod) |
51 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝑋 ∈ 𝑉) |
52 | 39 | fveq2i 6759 |
. . . . . . . . . . . . . . 15
⊢
(∗‘𝐶) =
(∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌))) |
53 | 23, 27, 37 | cjdivd 14862 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌))) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌)))) |
54 | 52, 53 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘𝐶) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌)))) |
55 | 8 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 →
(*𝑟‘𝐹) =
(*𝑟‘(ℂfld ↾s 𝐾))) |
56 | 10 | fvexi 6770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐾 ∈ V |
57 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(ℂfld ↾s 𝐾) = (ℂfld
↾s 𝐾) |
58 | | cnfldcj 20517 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∗
= (*𝑟‘ℂfld) |
59 | 57, 58 | ressstarv 16944 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐾 ∈ V → ∗ =
(*𝑟‘(ℂfld ↾s 𝐾))) |
60 | 56, 59 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∗
= (*𝑟‘(ℂfld ↾s 𝐾)) |
61 | 55, 60 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(*𝑟‘𝐹) = ∗) |
62 | 61 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
((*𝑟‘𝐹)‘(𝑋 , 𝑌)) = (∗‘(𝑋 , 𝑌))) |
63 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(*𝑟‘𝐹) = (*𝑟‘𝐹) |
64 | 6, 15, 5, 63 | ipcj 20751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋)) |
65 | 7, 13, 14, 64 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
((*𝑟‘𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋)) |
66 | 62, 65 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋)) |
67 | 66 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋)) |
68 | 67 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) →
(∗‘(∗‘(𝑋 , 𝑌))) = (∗‘(𝑌 , 𝑋))) |
69 | 19 | cjcjd 14838 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) →
(∗‘(∗‘(𝑋 , 𝑌))) = (𝑋 , 𝑌)) |
70 | 68, 69 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘(𝑌 , 𝑋)) = (𝑋 , 𝑌)) |
71 | 25 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 , 𝑌) ∈ ℝ) |
72 | 71 | cjred 14865 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘(𝑌 , 𝑌)) = (𝑌 , 𝑌)) |
73 | 70, 72 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))) = ((𝑋 , 𝑌) / (𝑌 , 𝑌))) |
74 | 19, 27, 37 | divrecd 11684 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌)))) |
75 | 54, 73, 74 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘𝐶) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌)))) |
76 | 9 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝑊 ∈ ℂMod) |
77 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 , 𝑌) ∈ 𝐾) |
78 | 6, 15, 5, 10 | ipcl 20750 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ 𝐾) |
79 | 7, 14, 14, 78 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑌 , 𝑌) ∈ 𝐾) |
80 | 79 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 , 𝑌) ∈ 𝐾) |
81 | 8 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝐹 = (ℂfld
↾s 𝐾)) |
82 | | phllvec 20746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) |
83 | 7, 82 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑊 ∈ LVec) |
84 | 6 | lvecdrng 20282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 ∈ LVec → 𝐹 ∈
DivRing) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ DivRing) |
86 | 85 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝐹 ∈ DivRing) |
87 | 10, 81, 86 | cphreccllem 24247 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑌 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑌) ≠ 0) → (1 / (𝑌 , 𝑌)) ∈ 𝐾) |
88 | 80, 37, 87 | mpd3an23 1461 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (1 / (𝑌 , 𝑌)) ∈ 𝐾) |
89 | 6, 10 | clmmcl 24154 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾) |
90 | 76, 77, 88, 89 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾) |
91 | 75, 90 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘𝐶) ∈ 𝐾) |
92 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝑌 ∈ 𝑉) |
93 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
94 | 5, 6, 93, 10 | lmodvscl 20055 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧
(∗‘𝐶) ∈
𝐾 ∧ 𝑌 ∈ 𝑉) → ((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) ∈ 𝑉) |
95 | 50, 91, 92, 94 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) ∈ 𝑉) |
96 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(-g‘𝑊) = (-g‘𝑊) |
97 | 5, 96 | lmodvsubcl 20083 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) ∈ 𝑉) → (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) ∈ 𝑉) |
98 | 50, 51, 95, 97 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) ∈ 𝑉) |
99 | 44, 47, 98 | rspcdva 3554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 0 ≤ ((𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) , (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)))) |
100 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(-g‘𝐹) = (-g‘𝐹) |
101 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝐹) = (+g‘𝐹) |
102 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝑊 ∈ PreHil) |
103 | 6, 15, 5, 96, 100, 101, 102, 51, 95, 51, 95 | ip2subdi 20761 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) , (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌))) = (((𝑋 , 𝑋)(+g‘𝐹)(((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)))(-g‘𝐹)((𝑋 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌))(+g‘𝐹)(((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) , 𝑋)))) |
104 | 81 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (+g‘𝐹) =
(+g‘(ℂfld ↾s 𝐾))) |
105 | | cnfldadd 20515 |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘ℂfld) |
106 | 57, 105 | ressplusg 16926 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ V → + =
(+g‘(ℂfld ↾s 𝐾))) |
107 | 56, 106 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ + =
(+g‘(ℂfld ↾s 𝐾)) |
108 | 104, 107 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (+g‘𝐹) = + ) |
109 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 , 𝑋) = (𝑋 , 𝑋)) |
110 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝐹) = (.r‘𝐹) |
111 | 6, 15, 5, 10, 93, 110 | ipass 20762 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ PreHil ∧
((∗‘𝐶) ∈
𝐾 ∧ 𝑌 ∈ 𝑉 ∧ ((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) ∈ 𝑉)) → (((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌) , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)) = ((∗‘𝐶)(.r‘𝐹)(𝑌 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)))) |
112 | 102, 91, 92, 95, 111 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌) , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)) = ((∗‘𝐶)(.r‘𝐹)(𝑌 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)))) |
113 | 81 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (.r‘𝐹) =
(.r‘(ℂfld ↾s 𝐾))) |
114 | | cnfldmul 20516 |
. . . . . . . . . . . . . . . . 17
⊢ ·
= (.r‘ℂfld) |
115 | 57, 114 | ressmulr 16943 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ V → · =
(.r‘(ℂfld ↾s 𝐾))) |
116 | 56, 115 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ·
= (.r‘(ℂfld ↾s 𝐾)) |
117 | 113, 116 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (.r‘𝐹) = · ) |
118 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (∗‘𝐶) = (∗‘𝐶)) |
119 | 23, 27, 37 | divrecd 11684 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌)))) |
120 | 39, 119 | eqtrid 2790 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝐶 = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌)))) |
121 | 21 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 , 𝑋) ∈ 𝐾) |
122 | 6, 10 | clmmcl 24154 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ ℂMod ∧ (𝑌 , 𝑋) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾) |
123 | 76, 121, 88, 122 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾) |
124 | 120, 123 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝐶 ∈ 𝐾) |
125 | 6, 15, 5, 10, 93, 110, 63 | ipassr2 20764 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ PreHil ∧ (𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝑌 , 𝑌)(.r‘𝐹)𝐶) = (𝑌 ,
(((*𝑟‘𝐹)‘𝐶)( ·𝑠
‘𝑊)𝑌))) |
126 | 102, 92, 92, 124, 125 | syl13anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑌 , 𝑌)(.r‘𝐹)𝐶) = (𝑌 ,
(((*𝑟‘𝐹)‘𝐶)( ·𝑠
‘𝑊)𝑌))) |
127 | 117 | oveqd 7272 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑌 , 𝑌)(.r‘𝐹)𝐶) = ((𝑌 , 𝑌) · 𝐶)) |
128 | 39 | oveq2i 7266 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌 , 𝑌) · 𝐶) = ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) |
129 | 23, 27, 37 | divcan2d 11683 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) = (𝑌 , 𝑋)) |
130 | 128, 129 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑌 , 𝑌) · 𝐶) = (𝑌 , 𝑋)) |
131 | 127, 130 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑌 , 𝑌)(.r‘𝐹)𝐶) = (𝑌 , 𝑋)) |
132 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (*𝑟‘𝐹) = ∗) |
133 | 132 | fveq1d 6758 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) →
((*𝑟‘𝐹)‘𝐶) = (∗‘𝐶)) |
134 | 133 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) →
(((*𝑟‘𝐹)‘𝐶)( ·𝑠
‘𝑊)𝑌) = ((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) |
135 | 134 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 ,
(((*𝑟‘𝐹)‘𝐶)( ·𝑠
‘𝑊)𝑌)) = (𝑌 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌))) |
136 | 126, 131,
135 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑌 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)) = (𝑌 , 𝑋)) |
137 | 117, 118,
136 | oveq123d 7276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((∗‘𝐶)(.r‘𝐹)(𝑌 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌))) = ((∗‘𝐶) · (𝑌 , 𝑋))) |
138 | 112, 137 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌) , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)) = ((∗‘𝐶) · (𝑌 , 𝑋))) |
139 | 108, 109,
138 | oveq123d 7276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑋)(+g‘𝐹)(((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌))) = ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))) |
140 | 6, 15, 5, 10, 93, 110, 63 | ipassr2 20764 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ PreHil ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝑋 , 𝑌)(.r‘𝐹)𝐶) = (𝑋 ,
(((*𝑟‘𝐹)‘𝐶)( ·𝑠
‘𝑊)𝑌))) |
141 | 102, 51, 92, 124, 140 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌)(.r‘𝐹)𝐶) = (𝑋 ,
(((*𝑟‘𝐹)‘𝐶)( ·𝑠
‘𝑊)𝑌))) |
142 | 117 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌)(.r‘𝐹)𝐶) = ((𝑋 , 𝑌) · 𝐶)) |
143 | 134 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 ,
(((*𝑟‘𝐹)‘𝐶)( ·𝑠
‘𝑊)𝑌)) = (𝑋 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌))) |
144 | 141, 142,
143 | 3eqtr3rd 2787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)) = ((𝑋 , 𝑌) · 𝐶)) |
145 | 6, 15, 5, 10, 93, 110 | ipass 20762 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ PreHil ∧
((∗‘𝐶) ∈
𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r‘𝐹)(𝑌 , 𝑋))) |
146 | 102, 91, 92, 51, 145 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r‘𝐹)(𝑌 , 𝑋))) |
147 | 117 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((∗‘𝐶)(.r‘𝐹)(𝑌 , 𝑋)) = ((∗‘𝐶) · (𝑌 , 𝑋))) |
148 | 146, 147 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌) , 𝑋) = ((∗‘𝐶) · (𝑌 , 𝑋))) |
149 | 108, 144,
148 | oveq123d 7276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌))(+g‘𝐹)(((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) , 𝑋)) = (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) |
150 | 139, 149 | oveq12d 7273 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑋)(+g‘𝐹)(((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌)))(-g‘𝐹)((𝑋 , ((∗‘𝐶)(
·𝑠 ‘𝑊)𝑌))(+g‘𝐹)(((∗‘𝐶)( ·𝑠
‘𝑊)𝑌) , 𝑋))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g‘𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))) |
151 | 6, 15, 5, 10 | ipcl 20750 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ 𝐾) |
152 | 102, 51, 51, 151 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 , 𝑋) ∈ 𝐾) |
153 | 6, 10 | clmmcl 24154 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ ℂMod ∧
(∗‘𝐶) ∈
𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) |
154 | 76, 91, 121, 153 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) |
155 | 6, 10 | clmacl 24153 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) |
156 | 76, 152, 154, 155 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) |
157 | 6, 10 | clmmcl 24154 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ 𝐶 ∈ 𝐾) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾) |
158 | 76, 77, 124, 157 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾) |
159 | 6, 10 | clmacl 24153 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) |
160 | 76, 158, 154, 159 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) |
161 | 6, 10 | clmsub 24149 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾 ∧ (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g‘𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))) |
162 | 76, 156, 160, 161 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g‘𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))) |
163 | 4, 5, 6, 7, 8, 15 | tcphcphlem3 24302 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) |
164 | 13, 163 | mpdan 683 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 , 𝑋) ∈ ℝ) |
165 | 164 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 , 𝑋) ∈ ℂ) |
166 | 165 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 , 𝑋) ∈ ℂ) |
167 | 18 | absvalsqd 15082 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌)))) |
168 | 66 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))) = ((𝑋 , 𝑌) · (𝑌 , 𝑋))) |
169 | 167, 168 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (𝑌 , 𝑋))) |
170 | 18 | abscld 15076 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ) |
171 | 170 | resqcld 13893 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ∈ ℝ) |
172 | 169, 171 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ) |
173 | 172 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ) |
174 | 173, 71, 37 | redivcld 11733 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ∈ ℝ) |
175 | 41, 174 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℝ) |
176 | 175 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℂ) |
177 | 76, 11 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 𝐾 ⊆ ℂ) |
178 | 177, 154 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ ℂ) |
179 | 166, 176,
178 | pnpcan2d 11300 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶))) |
180 | 162, 179 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g‘𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶))) |
181 | 103, 150,
180 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌)) , (𝑋(-g‘𝑊)((∗‘𝐶)( ·𝑠
‘𝑊)𝑌))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶))) |
182 | 99, 181 | breqtrd 5096 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶))) |
183 | 164 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (𝑋 , 𝑋) ∈ ℝ) |
184 | 183, 175 | subge0d 11495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)) ↔ ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋))) |
185 | 182, 184 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋)) |
186 | 41, 185 | eqbrtrd 5092 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋)) |
187 | | oveq12 7264 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑌 ∧ 𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
188 | 187 | anidms 566 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
189 | 188 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌))) |
190 | 189, 46, 14 | rspcdva 3554 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝑌 , 𝑌)) |
191 | 190 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 0 ≤ (𝑌 , 𝑌)) |
192 | 71, 191, 37 | ne0gt0d 11042 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → 0 < (𝑌 , 𝑌)) |
193 | | ledivmul2 11784 |
. . . . . . 7
⊢ ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ ∧ (𝑋 , 𝑋) ∈ ℝ ∧ ((𝑌 , 𝑌) ∈ ℝ ∧ 0 < (𝑌 , 𝑌))) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))) |
194 | 173, 183,
71, 192, 193 | syl112anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))) |
195 | 186, 194 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ≠ (0g‘𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))) |
196 | 6, 15, 5, 31, 32 | ip0r 20754 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉) → (𝑋 , (0g‘𝑊)) = (0g‘𝐹)) |
197 | 7, 13, 196 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 , (0g‘𝑊)) = (0g‘𝐹)) |
198 | 197, 29 | eqtr4d 2781 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 , (0g‘𝑊)) = 0) |
199 | 198 | oveq1d 7270 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 , (0g‘𝑊)) · (𝑌 , 𝑋)) = (0 · (𝑌 , 𝑋))) |
200 | 22 | mul02d 11103 |
. . . . . . 7
⊢ (𝜑 → (0 · (𝑌 , 𝑋)) = 0) |
201 | 199, 200 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑋 , (0g‘𝑊)) · (𝑌 , 𝑋)) = 0) |
202 | | oveq12 7264 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑋 ∧ 𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋)) |
203 | 202 | anidms 566 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋)) |
204 | 203 | breq2d 5082 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋))) |
205 | 204, 46, 13 | rspcdva 3554 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝑋 , 𝑋)) |
206 | 164, 25, 205, 190 | mulge0d 11482 |
. . . . . 6
⊢ (𝜑 → 0 ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))) |
207 | 201, 206 | eqbrtrd 5092 |
. . . . 5
⊢ (𝜑 → ((𝑋 , (0g‘𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))) |
208 | 3, 195, 207 | pm2.61ne 3029 |
. . . 4
⊢ (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))) |
209 | 164, 205 | resqrtcld 15057 |
. . . . . . 7
⊢ (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ) |
210 | 209 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ) |
211 | 25, 190 | resqrtcld 15057 |
. . . . . . 7
⊢ (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ) |
212 | 211 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ) |
213 | 210, 212 | sqmuld 13804 |
. . . . 5
⊢ (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2))) |
214 | 165 | sqsqrtd 15079 |
. . . . . 6
⊢ (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋)) |
215 | 26 | sqsqrtd 15079 |
. . . . . 6
⊢ (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌)) |
216 | 214, 215 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)) = ((𝑋 , 𝑋) · (𝑌 , 𝑌))) |
217 | 213, 216 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = ((𝑋 , 𝑋) · (𝑌 , 𝑌))) |
218 | 208, 169,
217 | 3brtr4d 5102 |
. . 3
⊢ (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2)) |
219 | 209, 211 | remulcld 10936 |
. . . 4
⊢ (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ) |
220 | 18 | absge0d 15084 |
. . . 4
⊢ (𝜑 → 0 ≤ (abs‘(𝑋 , 𝑌))) |
221 | 164, 205 | sqrtge0d 15060 |
. . . . 5
⊢ (𝜑 → 0 ≤
(√‘(𝑋 , 𝑋))) |
222 | 25, 190 | sqrtge0d 15060 |
. . . . 5
⊢ (𝜑 → 0 ≤
(√‘(𝑌 , 𝑌))) |
223 | 209, 211,
221, 222 | mulge0d 11482 |
. . . 4
⊢ (𝜑 → 0 ≤
((√‘(𝑋 , 𝑋)) ·
(√‘(𝑌 , 𝑌)))) |
224 | 170, 219,
220, 223 | le2sqd 13902 |
. . 3
⊢ (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2))) |
225 | 218, 224 | mpbird 256 |
. 2
⊢ (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) |
226 | | lmodgrp 20045 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
227 | 49, 226 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ Grp) |
228 | | ipcau2.n |
. . . . 5
⊢ 𝑁 = (norm‘𝐺) |
229 | 4, 228, 5, 15 | tcphnmval 24298 |
. . . 4
⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) = (√‘(𝑋 , 𝑋))) |
230 | 227, 13, 229 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝑁‘𝑋) = (√‘(𝑋 , 𝑋))) |
231 | 4, 228, 5, 15 | tcphnmval 24298 |
. . . 4
⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑌) = (√‘(𝑌 , 𝑌))) |
232 | 227, 14, 231 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝑁‘𝑌) = (√‘(𝑌 , 𝑌))) |
233 | 230, 232 | oveq12d 7273 |
. 2
⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))) |
234 | 225, 233 | breqtrrd 5098 |
1
⊢ (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) |