MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau2 Structured version   Visualization version   GIF version

Theorem ipcau2 23520
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
ipcau2.n 𝑁 = (norm‘𝐺)
ipcau2.c 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
ipcau2.3 (𝜑𝑋𝑉)
ipcau2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
ipcau2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝐶   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐾(𝑥)   𝑁(𝑥)

Proof of Theorem ipcau2
StepHypRef Expression
1 oveq2 7024 . . . . . . 7 (𝑌 = (0g𝑊) → (𝑋 , 𝑌) = (𝑋 , (0g𝑊)))
21oveq1d 7031 . . . . . 6 (𝑌 = (0g𝑊) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) = ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)))
32breq1d 4972 . . . . 5 (𝑌 = (0g𝑊) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)) ↔ ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
4 tcphval.n . . . . . . . . . . . . 13 𝐺 = (toℂPreHil‘𝑊)
5 tcphcph.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑊)
6 tcphcph.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
7 tcphcph.1 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ PreHil)
8 tcphcph.2 . . . . . . . . . . . . 13 (𝜑𝐹 = (ℂflds 𝐾))
94, 5, 6, 7, 8phclm 23518 . . . . . . . . . . . 12 (𝜑𝑊 ∈ ℂMod)
10 tcphcph.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
116, 10clmsscn 23366 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
129, 11syl 17 . . . . . . . . . . 11 (𝜑𝐾 ⊆ ℂ)
13 ipcau2.3 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
14 ipcau2.4 . . . . . . . . . . . 12 (𝜑𝑌𝑉)
15 tcphcph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
166, 15, 5, 10ipcl 20459 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
177, 13, 14, 16syl3anc 1364 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
1812, 17sseldd 3890 . . . . . . . . . 10 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
1918adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ ℂ)
206, 15, 5, 10ipcl 20459 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
217, 14, 13, 20syl3anc 1364 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
2212, 21sseldd 3890 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
2322adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ ℂ)
244, 5, 6, 7, 8, 15tcphcphlem3 23519 . . . . . . . . . . . 12 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
2514, 24mpdan 683 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2625recnd 10515 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
2726adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℂ)
286clm0 23359 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
299, 28syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 = (0g𝐹))
3029eqeq2d 2805 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ (𝑌 , 𝑌) = (0g𝐹)))
31 eqid 2795 . . . . . . . . . . . . . 14 (0g𝐹) = (0g𝐹)
32 eqid 2795 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
336, 15, 5, 31, 32ipeq0 20464 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑌𝑉) → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
347, 14, 33syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
3530, 34bitrd 280 . . . . . . . . . . 11 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ 𝑌 = (0g𝑊)))
3635necon3bid 3028 . . . . . . . . . 10 (𝜑 → ((𝑌 , 𝑌) ≠ 0 ↔ 𝑌 ≠ (0g𝑊)))
3736biimpar 478 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ≠ 0)
3819, 23, 27, 37divassd 11299 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))))
39 ipcau2.c . . . . . . . . 9 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
4039oveq2i 7027 . . . . . . . 8 ((𝑋 , 𝑌) · 𝐶) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
4138, 40syl6eqr 2849 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · 𝐶))
42 oveq12 7025 . . . . . . . . . . . 12 ((𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∧ 𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4342anidms 567 . . . . . . . . . . 11 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4443breq2d 4974 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)))))
45 tcphcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
4645ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
4746adantr 481 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
48 phllmod 20456 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
497, 48syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
5049adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
5113adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑋𝑉)
5239fveq2i 6541 . . . . . . . . . . . . . . 15 (∗‘𝐶) = (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌)))
5323, 27, 37cjdivd 14416 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌))) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
5452, 53syl5eq 2843 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
558fveq2d 6542 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (*𝑟𝐹) = (*𝑟‘(ℂflds 𝐾)))
5610fvexi 6552 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
57 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . 23 (ℂflds 𝐾) = (ℂflds 𝐾)
58 cnfldcj 20234 . . . . . . . . . . . . . . . . . . . . . . 23 ∗ = (*𝑟‘ℂfld)
5957, 58ressstarv 16455 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ V → ∗ = (*𝑟‘(ℂflds 𝐾)))
6056, 59ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ∗ = (*𝑟‘(ℂflds 𝐾))
6155, 60syl6eqr 2849 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (*𝑟𝐹) = ∗)
6261fveq1d 6540 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (∗‘(𝑋 , 𝑌)))
63 eqid 2795 . . . . . . . . . . . . . . . . . . . . 21 (*𝑟𝐹) = (*𝑟𝐹)
646, 15, 5, 63ipcj 20460 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
657, 13, 14, 64syl3anc 1364 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6662, 65eqtr3d 2833 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6766adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6867fveq2d 6542 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (∗‘(𝑌 , 𝑋)))
6919cjcjd 14392 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (𝑋 , 𝑌))
7068, 69eqtr3d 2833 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑋)) = (𝑋 , 𝑌))
7125adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℝ)
7271cjred 14419 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑌)) = (𝑌 , 𝑌))
7370, 72oveq12d 7034 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))) = ((𝑋 , 𝑌) / (𝑌 , 𝑌)))
7419, 27, 37divrecd 11267 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
7554, 73, 743eqtrd 2835 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
769adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ ℂMod)
7717adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ 𝐾)
786, 15, 5, 10ipcl 20459 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
797, 14, 14, 78syl3anc 1364 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
8079adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ 𝐾)
818adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 = (ℂflds 𝐾))
82 phllvec 20455 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
837, 82syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ LVec)
846lvecdrng 19567 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ DivRing)
8685adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 ∈ DivRing)
8710, 81, 86cphreccllem 23465 . . . . . . . . . . . . . . 15 (((𝜑𝑌 ≠ (0g𝑊)) ∧ (𝑌 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑌) ≠ 0) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
8880, 37, 87mpd3an23 1455 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
896, 10clmmcl 23372 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9076, 77, 88, 89syl3anc 1364 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9175, 90eqeltrd 2883 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) ∈ 𝐾)
9214adantr 481 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑌𝑉)
93 eqid 2795 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
945, 6, 93, 10lmodvscl 19341 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (∗‘𝐶) ∈ 𝐾𝑌𝑉) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
9550, 91, 92, 94syl3anc 1364 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
96 eqid 2795 . . . . . . . . . . . 12 (-g𝑊) = (-g𝑊)
975, 96lmodvsubcl 19369 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9850, 51, 95, 97syl3anc 1364 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9944, 47, 98rspcdva 3565 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
100 eqid 2795 . . . . . . . . . . 11 (-g𝐹) = (-g𝐹)
101 eqid 2795 . . . . . . . . . . 11 (+g𝐹) = (+g𝐹)
1027adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ PreHil)
1036, 15, 5, 96, 100, 101, 102, 51, 95, 51, 95ip2subdi 20470 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))))
10481fveq2d 6542 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = (+g‘(ℂflds 𝐾)))
105 cnfldadd 20232 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
10657, 105ressplusg 16441 . . . . . . . . . . . . . 14 (𝐾 ∈ V → + = (+g‘(ℂflds 𝐾)))
10756, 106ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(ℂflds 𝐾))
108104, 107syl6eqr 2849 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = + )
109 eqidd 2796 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) = (𝑋 , 𝑋))
110 eqid 2795 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
1116, 15, 5, 10, 93, 110ipass 20471 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
112102, 91, 92, 95, 111syl13anc 1365 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
11381fveq2d 6542 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = (.r‘(ℂflds 𝐾)))
114 cnfldmul 20233 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
11557, 114ressmulr 16454 . . . . . . . . . . . . . . . 16 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
11656, 115ax-mp 5 . . . . . . . . . . . . . . 15 · = (.r‘(ℂflds 𝐾))
117113, 116syl6eqr 2849 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = · )
118 eqidd 2796 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = (∗‘𝐶))
11923, 27, 37divrecd 11267 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12039, 119syl5eq 2843 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶 = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12121adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ 𝐾)
1226, 10clmmcl 23372 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂMod ∧ (𝑌 , 𝑋) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
12376, 121, 88, 122syl3anc 1364 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
124120, 123eqeltrd 2883 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶𝐾)
1256, 15, 5, 10, 93, 110, 63ipassr2 20473 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ (𝑌𝑉𝑌𝑉𝐶𝐾)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
126102, 92, 92, 124, 125syl13anc 1365 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
127117oveqd 7033 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = ((𝑌 , 𝑌) · 𝐶))
12839oveq2i 7027 . . . . . . . . . . . . . . . . 17 ((𝑌 , 𝑌) · 𝐶) = ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
12923, 27, 37divcan2d 11266 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) = (𝑌 , 𝑋))
130128, 129syl5eq 2843 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · 𝐶) = (𝑌 , 𝑋))
131127, 130eqtrd 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , 𝑋))
13261adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (*𝑟𝐹) = ∗)
133132fveq1d 6540 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((*𝑟𝐹)‘𝐶) = (∗‘𝐶))
134133oveq1d 7031 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌) = ((∗‘𝐶)( ·𝑠𝑊)𝑌))
135134oveq2d 7032 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
136126, 131, 1353eqtr3rd 2840 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , 𝑋))
137117, 118, 136oveq123d 7037 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((∗‘𝐶) · (𝑌 , 𝑋)))
138112, 137eqtrd 2831 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
139108, 109, 138oveq123d 7037 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))))
1406, 15, 5, 10, 93, 110, 63ipassr2 20473 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ (𝑋𝑉𝑌𝑉𝐶𝐾)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
141102, 51, 92, 124, 140syl13anc 1365 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
142117oveqd 7033 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = ((𝑋 , 𝑌) · 𝐶))
143134oveq2d 7032 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
144141, 142, 1433eqtr3rd 2840 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((𝑋 , 𝑌) · 𝐶))
1456, 15, 5, 10, 93, 110ipass 20471 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉𝑋𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
146102, 91, 92, 51, 145syl13anc 1365 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
147117oveqd 7033 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
148146, 147eqtrd 2831 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶) · (𝑌 , 𝑋)))
149108, 144, 148oveq123d 7037 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋)) = (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))
150139, 149oveq12d 7034 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1516, 15, 5, 10ipcl 20459 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
152102, 51, 51, 151syl3anc 1364 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ 𝐾)
1536, 10clmmcl 23372 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (∗‘𝐶) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
15476, 91, 121, 153syl3anc 1364 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
1556, 10clmacl 23371 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
15676, 152, 154, 155syl3anc 1364 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1576, 10clmmcl 23372 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾𝐶𝐾) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
15876, 77, 124, 157syl3anc 1364 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
1596, 10clmacl 23371 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
16076, 158, 154, 159syl3anc 1364 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1616, 10clmsub 23367 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾 ∧ (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
16276, 156, 160, 161syl3anc 1364 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1634, 5, 6, 7, 8, 15tcphcphlem3 23519 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
16413, 163mpdan 683 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
165164recnd 10515 . . . . . . . . . . . . 13 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
166165adantr 481 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℂ)
16718absvalsqd 14636 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))))
16866oveq2d 7032 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
169167, 168eqtrd 2831 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
17018abscld 14630 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
171170resqcld 13461 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ∈ ℝ)
172169, 171eqeltrrd 2884 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
173172adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
174173, 71, 37redivcld 11316 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ∈ ℝ)
17541, 174eqeltrrd 2884 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℝ)
176175recnd 10515 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℂ)
17776, 11syl 17 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐾 ⊆ ℂ)
178177, 154sseldd 3890 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ ℂ)
179166, 176, 178pnpcan2d 10883 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
180162, 179eqtr3d 2833 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
181103, 150, 1803eqtrd 2835 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
18299, 181breqtrd 4988 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
183164adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℝ)
184183, 175subge0d 11078 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)) ↔ ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋)))
185182, 184mpbid 233 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋))
18641, 185eqbrtrd 4984 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋))
187 oveq12 7025 . . . . . . . . . . . 12 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
188187anidms 567 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
189188breq2d 4974 . . . . . . . . . 10 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
190189, 46, 14rspcdva 3565 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑌 , 𝑌))
191190adantr 481 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ (𝑌 , 𝑌))
19271, 191, 37ne0gt0d 10624 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → 0 < (𝑌 , 𝑌))
193 ledivmul2 11367 . . . . . . 7 ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ ∧ (𝑋 , 𝑋) ∈ ℝ ∧ ((𝑌 , 𝑌) ∈ ℝ ∧ 0 < (𝑌 , 𝑌))) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
194173, 183, 71, 192, 193syl112anc 1367 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
195186, 194mpbid 233 . . . . 5 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
1966, 15, 5, 31, 32ip0r 20463 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑋𝑉) → (𝑋 , (0g𝑊)) = (0g𝐹))
1977, 13, 196syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋 , (0g𝑊)) = (0g𝐹))
198197, 29eqtr4d 2834 . . . . . . . 8 (𝜑 → (𝑋 , (0g𝑊)) = 0)
199198oveq1d 7031 . . . . . . 7 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = (0 · (𝑌 , 𝑋)))
20022mul02d 10685 . . . . . . 7 (𝜑 → (0 · (𝑌 , 𝑋)) = 0)
201199, 200eqtrd 2831 . . . . . 6 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = 0)
202 oveq12 7025 . . . . . . . . . 10 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
203202anidms 567 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
204203breq2d 4974 . . . . . . . 8 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
205204, 46, 13rspcdva 3565 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 , 𝑋))
206164, 25, 205, 190mulge0d 11065 . . . . . 6 (𝜑 → 0 ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
207201, 206eqbrtrd 4984 . . . . 5 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
2083, 195, 207pm2.61ne 3070 . . . 4 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
209164, 205resqrtcld 14611 . . . . . . 7 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
210209recnd 10515 . . . . . 6 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
21125, 190resqrtcld 14611 . . . . . . 7 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
212211recnd 10515 . . . . . 6 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
213210, 212sqmuld 13372 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)))
214165sqsqrtd 14633 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
21526sqsqrtd 14633 . . . . . 6 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
216214, 215oveq12d 7034 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
217213, 216eqtrd 2831 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
218208, 169, 2173brtr4d 4994 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2))
219209, 211remulcld 10517 . . . 4 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
22018absge0d 14638 . . . 4 (𝜑 → 0 ≤ (abs‘(𝑋 , 𝑌)))
221164, 205sqrtge0d 14614 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
22225, 190sqrtge0d 14614 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
223209, 211, 221, 222mulge0d 11065 . . . 4 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
224170, 219, 220, 223le2sqd 13470 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2)))
225218, 224mpbird 258 . 2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
226 lmodgrp 19331 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
22749, 226syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
228 ipcau2.n . . . . 5 𝑁 = (norm‘𝐺)
2294, 228, 5, 15tcphnmval 23515 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
230227, 13, 229syl2anc 584 . . 3 (𝜑 → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
2314, 228, 5, 15tcphnmval 23515 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
232227, 14, 231syl2anc 584 . . 3 (𝜑 → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
233230, 232oveq12d 7034 . 2 (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
234225, 233breqtrrd 4990 1 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  Vcvv 3437  wss 3859   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  2c2 11540  cexp 13279  ccj 14289  csqrt 14426  abscabs 14427  Basecbs 16312  s cress 16313  +gcplusg 16394  .rcmulr 16395  *𝑟cstv 16396  Scalarcsca 16397   ·𝑠 cvsca 16398  ·𝑖cip 16399  0gc0g 16542  Grpcgrp 17861  -gcsg 17863  DivRingcdr 19192  LModclmod 19324  LVecclvec 19564  fldccnfld 20227  PreHilcphl 20450  normcnm 22869  ℂModcclm 23349  toℂPreHilctcph 23454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-rp 12240  df-fz 12743  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-grp 17864  df-minusg 17865  df-sbg 17866  df-subg 18030  df-ghm 18097  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-rnghom 19157  df-drng 19194  df-subrg 19223  df-staf 19306  df-srng 19307  df-lmod 19326  df-lmhm 19484  df-lvec 19565  df-sra 19634  df-rgmod 19635  df-cnfld 20228  df-phl 20452  df-nm 22875  df-tng 22877  df-clm 23350  df-tcph 23456
This theorem is referenced by:  tcphcphlem1  23521  ipcau  23524
  Copyright terms: Public domain W3C validator