MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau2 Structured version   Visualization version   GIF version

Theorem ipcau2 24398
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space built from a pre-Hilbert space with certain properties. The main theorem is ipcau 24402. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
ipcau2.n 𝑁 = (norm‘𝐺)
ipcau2.c 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
ipcau2.3 (𝜑𝑋𝑉)
ipcau2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
ipcau2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝐶   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐾(𝑥)   𝑁(𝑥)

Proof of Theorem ipcau2
StepHypRef Expression
1 oveq2 7283 . . . . . . 7 (𝑌 = (0g𝑊) → (𝑋 , 𝑌) = (𝑋 , (0g𝑊)))
21oveq1d 7290 . . . . . 6 (𝑌 = (0g𝑊) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) = ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)))
32breq1d 5084 . . . . 5 (𝑌 = (0g𝑊) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)) ↔ ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
4 tcphval.n . . . . . . . . . . . . 13 𝐺 = (toℂPreHil‘𝑊)
5 tcphcph.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑊)
6 tcphcph.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
7 tcphcph.1 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ PreHil)
8 tcphcph.2 . . . . . . . . . . . . 13 (𝜑𝐹 = (ℂflds 𝐾))
94, 5, 6, 7, 8phclm 24396 . . . . . . . . . . . 12 (𝜑𝑊 ∈ ℂMod)
10 tcphcph.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
116, 10clmsscn 24242 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
129, 11syl 17 . . . . . . . . . . 11 (𝜑𝐾 ⊆ ℂ)
13 ipcau2.3 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
14 ipcau2.4 . . . . . . . . . . . 12 (𝜑𝑌𝑉)
15 tcphcph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
166, 15, 5, 10ipcl 20838 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ 𝐾)
177, 13, 14, 16syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑋 , 𝑌) ∈ 𝐾)
1812, 17sseldd 3922 . . . . . . . . . 10 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
1918adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ ℂ)
206, 15, 5, 10ipcl 20838 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑋𝑉) → (𝑌 , 𝑋) ∈ 𝐾)
217, 14, 13, 20syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑋) ∈ 𝐾)
2212, 21sseldd 3922 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑋) ∈ ℂ)
2322adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ ℂ)
244, 5, 6, 7, 8, 15tcphcphlem3 24397 . . . . . . . . . . . 12 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
2514, 24mpdan 684 . . . . . . . . . . 11 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
2625recnd 11003 . . . . . . . . . 10 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
2726adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℂ)
286clm0 24235 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g𝐹))
299, 28syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 = (0g𝐹))
3029eqeq2d 2749 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ (𝑌 , 𝑌) = (0g𝐹)))
31 eqid 2738 . . . . . . . . . . . . . 14 (0g𝐹) = (0g𝐹)
32 eqid 2738 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
336, 15, 5, 31, 32ipeq0 20843 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑌𝑉) → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
347, 14, 33syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑌 , 𝑌) = (0g𝐹) ↔ 𝑌 = (0g𝑊)))
3530, 34bitrd 278 . . . . . . . . . . 11 (𝜑 → ((𝑌 , 𝑌) = 0 ↔ 𝑌 = (0g𝑊)))
3635necon3bid 2988 . . . . . . . . . 10 (𝜑 → ((𝑌 , 𝑌) ≠ 0 ↔ 𝑌 ≠ (0g𝑊)))
3736biimpar 478 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ≠ 0)
3819, 23, 27, 37divassd 11786 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))))
39 ipcau2.c . . . . . . . . 9 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
4039oveq2i 7286 . . . . . . . 8 ((𝑋 , 𝑌) · 𝐶) = ((𝑋 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
4138, 40eqtr4di 2796 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · 𝐶))
42 oveq12 7284 . . . . . . . . . . . 12 ((𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∧ 𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4342anidms 567 . . . . . . . . . . 11 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (𝑥 , 𝑥) = ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
4443breq2d 5086 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)))))
45 tcphcph.4 . . . . . . . . . . . 12 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
4645ralrimiva 3103 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
4746adantr 481 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
48 phllmod 20835 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
497, 48syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
5049adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
5113adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑋𝑉)
5239fveq2i 6777 . . . . . . . . . . . . . . 15 (∗‘𝐶) = (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌)))
5323, 27, 37cjdivd 14934 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘((𝑌 , 𝑋) / (𝑌 , 𝑌))) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
5452, 53eqtrid 2790 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))))
558fveq2d 6778 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (*𝑟𝐹) = (*𝑟‘(ℂflds 𝐾)))
5610fvexi 6788 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
57 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (ℂflds 𝐾) = (ℂflds 𝐾)
58 cnfldcj 20604 . . . . . . . . . . . . . . . . . . . . . . 23 ∗ = (*𝑟‘ℂfld)
5957, 58ressstarv 17018 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ V → ∗ = (*𝑟‘(ℂflds 𝐾)))
6056, 59ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ∗ = (*𝑟‘(ℂflds 𝐾))
6155, 60eqtr4di 2796 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (*𝑟𝐹) = ∗)
6261fveq1d 6776 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (∗‘(𝑋 , 𝑌)))
63 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (*𝑟𝐹) = (*𝑟𝐹)
646, 15, 5, 63ipcj 20839 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑌𝑉) → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
657, 13, 14, 64syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((*𝑟𝐹)‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6662, 65eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6766adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑋 , 𝑌)) = (𝑌 , 𝑋))
6867fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (∗‘(𝑌 , 𝑋)))
6919cjcjd 14910 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(∗‘(𝑋 , 𝑌))) = (𝑋 , 𝑌))
7068, 69eqtr3d 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑋)) = (𝑋 , 𝑌))
7125adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ ℝ)
7271cjred 14937 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘(𝑌 , 𝑌)) = (𝑌 , 𝑌))
7370, 72oveq12d 7293 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘(𝑌 , 𝑋)) / (∗‘(𝑌 , 𝑌))) = ((𝑋 , 𝑌) / (𝑌 , 𝑌)))
7419, 27, 37divrecd 11754 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) / (𝑌 , 𝑌)) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
7554, 73, 743eqtrd 2782 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))))
769adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ ℂMod)
7717adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑌) ∈ 𝐾)
786, 15, 5, 10ipcl 20838 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑌𝑉𝑌𝑉) → (𝑌 , 𝑌) ∈ 𝐾)
797, 14, 14, 78syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 , 𝑌) ∈ 𝐾)
8079adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑌) ∈ 𝐾)
818adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 = (ℂflds 𝐾))
82 phllvec 20834 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
837, 82syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ LVec)
846lvecdrng 20367 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ DivRing)
8685adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐹 ∈ DivRing)
8710, 81, 86cphreccllem 24342 . . . . . . . . . . . . . . 15 (((𝜑𝑌 ≠ (0g𝑊)) ∧ (𝑌 , 𝑌) ∈ 𝐾 ∧ (𝑌 , 𝑌) ≠ 0) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
8880, 37, 87mpd3an23 1462 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (1 / (𝑌 , 𝑌)) ∈ 𝐾)
896, 10clmmcl 24248 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9076, 77, 88, 89syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
9175, 90eqeltrd 2839 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) ∈ 𝐾)
9214adantr 481 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑌𝑉)
93 eqid 2738 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
945, 6, 93, 10lmodvscl 20140 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (∗‘𝐶) ∈ 𝐾𝑌𝑉) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
9550, 91, 92, 94syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)
96 eqid 2738 . . . . . . . . . . . 12 (-g𝑊) = (-g𝑊)
975, 96lmodvsubcl 20168 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9850, 51, 95, 97syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) ∈ 𝑉)
9944, 47, 98rspcdva 3562 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))))
100 eqid 2738 . . . . . . . . . . 11 (-g𝐹) = (-g𝐹)
101 eqid 2738 . . . . . . . . . . 11 (+g𝐹) = (+g𝐹)
1027adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → 𝑊 ∈ PreHil)
1036, 15, 5, 96, 100, 101, 102, 51, 95, 51, 95ip2subdi 20849 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))))
10481fveq2d 6778 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = (+g‘(ℂflds 𝐾)))
105 cnfldadd 20602 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
10657, 105ressplusg 17000 . . . . . . . . . . . . . 14 (𝐾 ∈ V → + = (+g‘(ℂflds 𝐾)))
10756, 106ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(ℂflds 𝐾))
108104, 107eqtr4di 2796 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (+g𝐹) = + )
109 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) = (𝑋 , 𝑋))
110 eqid 2738 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
1116, 15, 5, 10, 93, 110ipass 20850 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉 ∧ ((∗‘𝐶)( ·𝑠𝑊)𝑌) ∈ 𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
112102, 91, 92, 95, 111syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))))
11381fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = (.r‘(ℂflds 𝐾)))
114 cnfldmul 20603 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
11557, 114ressmulr 17017 . . . . . . . . . . . . . . . 16 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
11656, 115ax-mp 5 . . . . . . . . . . . . . . 15 · = (.r‘(ℂflds 𝐾))
117113, 116eqtr4di 2796 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (.r𝐹) = · )
118 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (∗‘𝐶) = (∗‘𝐶))
11923, 27, 37divrecd 11754 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12039, 119eqtrid 2790 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶 = ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))))
12121adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , 𝑋) ∈ 𝐾)
1226, 10clmmcl 24248 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂMod ∧ (𝑌 , 𝑋) ∈ 𝐾 ∧ (1 / (𝑌 , 𝑌)) ∈ 𝐾) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
12376, 121, 88, 122syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑋) · (1 / (𝑌 , 𝑌))) ∈ 𝐾)
124120, 123eqeltrd 2839 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐶𝐾)
1256, 15, 5, 10, 93, 110, 63ipassr2 20852 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ (𝑌𝑉𝑌𝑉𝐶𝐾)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
126102, 92, 92, 124, 125syl13anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
127117oveqd 7292 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = ((𝑌 , 𝑌) · 𝐶))
12839oveq2i 7286 . . . . . . . . . . . . . . . . 17 ((𝑌 , 𝑌) · 𝐶) = ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌)))
12923, 27, 37divcan2d 11753 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · ((𝑌 , 𝑋) / (𝑌 , 𝑌))) = (𝑌 , 𝑋))
130128, 129eqtrid 2790 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌) · 𝐶) = (𝑌 , 𝑋))
131127, 130eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑌 , 𝑌)(.r𝐹)𝐶) = (𝑌 , 𝑋))
13261adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑌 ≠ (0g𝑊)) → (*𝑟𝐹) = ∗)
133132fveq1d 6776 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≠ (0g𝑊)) → ((*𝑟𝐹)‘𝐶) = (∗‘𝐶))
134133oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≠ (0g𝑊)) → (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌) = ((∗‘𝐶)( ·𝑠𝑊)𝑌))
135134oveq2d 7291 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
136126, 131, 1353eqtr3rd 2787 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑌 , 𝑋))
137117, 118, 136oveq123d 7296 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((∗‘𝐶) · (𝑌 , 𝑋)))
138112, 137eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
139108, 109, 138oveq123d 7296 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))))
1406, 15, 5, 10, 93, 110, 63ipassr2 20852 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ (𝑋𝑉𝑌𝑉𝐶𝐾)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
141102, 51, 92, 124, 140syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)))
142117oveqd 7292 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌)(.r𝐹)𝐶) = ((𝑋 , 𝑌) · 𝐶))
143134oveq2d 7291 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , (((*𝑟𝐹)‘𝐶)( ·𝑠𝑊)𝑌)) = (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))
144141, 142, 1433eqtr3rd 2787 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌)) = ((𝑋 , 𝑌) · 𝐶))
1456, 15, 5, 10, 93, 110ipass 20850 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ ((∗‘𝐶) ∈ 𝐾𝑌𝑉𝑋𝑉)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
146102, 91, 92, 51, 145syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)))
147117oveqd 7292 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶)(.r𝐹)(𝑌 , 𝑋)) = ((∗‘𝐶) · (𝑌 , 𝑋)))
148146, 147eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋) = ((∗‘𝐶) · (𝑌 , 𝑋)))
149108, 144, 148oveq123d 7296 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋)) = (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))))
150139, 149oveq12d 7293 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋)(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , ((∗‘𝐶)( ·𝑠𝑊)𝑌)))(-g𝐹)((𝑋 , ((∗‘𝐶)( ·𝑠𝑊)𝑌))(+g𝐹)(((∗‘𝐶)( ·𝑠𝑊)𝑌) , 𝑋))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1516, 15, 5, 10ipcl 20838 . . . . . . . . . . . . . 14 ((𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉) → (𝑋 , 𝑋) ∈ 𝐾)
152102, 51, 51, 151syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ 𝐾)
1536, 10clmmcl 24248 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (∗‘𝐶) ∈ 𝐾 ∧ (𝑌 , 𝑋) ∈ 𝐾) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
15476, 91, 121, 153syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾)
1556, 10clmacl 24247 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑋) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
15676, 152, 154, 155syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1576, 10clmmcl 24248 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑋 , 𝑌) ∈ 𝐾𝐶𝐾) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
15876, 77, 124, 157syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾)
1596, 10clmacl 24247 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑌) · 𝐶) ∈ 𝐾 ∧ ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ 𝐾) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
16076, 158, 154, 159syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾)
1616, 10clmsub 24243 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ ((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾 ∧ (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋))) ∈ 𝐾) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
16276, 156, 160, 161syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))))
1634, 5, 6, 7, 8, 15tcphcphlem3 24397 . . . . . . . . . . . . . . 15 ((𝜑𝑋𝑉) → (𝑋 , 𝑋) ∈ ℝ)
16413, 163mpdan 684 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 , 𝑋) ∈ ℝ)
165164recnd 11003 . . . . . . . . . . . . 13 (𝜑 → (𝑋 , 𝑋) ∈ ℂ)
166165adantr 481 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℂ)
16718absvalsqd 15154 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))))
16866oveq2d 7291 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑋 , 𝑌) · (∗‘(𝑋 , 𝑌))) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
169167, 168eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) = ((𝑋 , 𝑌) · (𝑌 , 𝑋)))
17018abscld 15148 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘(𝑋 , 𝑌)) ∈ ℝ)
171170resqcld 13965 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ∈ ℝ)
172169, 171eqeltrrd 2840 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
173172adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ)
174173, 71, 37redivcld 11803 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ∈ ℝ)
17541, 174eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℝ)
176175recnd 11003 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ∈ ℂ)
17776, 11syl 17 . . . . . . . . . . . . 13 ((𝜑𝑌 ≠ (0g𝑊)) → 𝐾 ⊆ ℂ)
178177, 154sseldd 3922 . . . . . . . . . . . 12 ((𝜑𝑌 ≠ (0g𝑊)) → ((∗‘𝐶) · (𝑌 , 𝑋)) ∈ ℂ)
179166, 176, 178pnpcan2d 11370 . . . . . . . . . . 11 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋))) − (((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
180162, 179eqtr3d 2780 . . . . . . . . . 10 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑋) + ((∗‘𝐶) · (𝑌 , 𝑋)))(-g𝐹)(((𝑋 , 𝑌) · 𝐶) + ((∗‘𝐶) · (𝑌 , 𝑋)))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
181103, 150, 1803eqtrd 2782 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌)) , (𝑋(-g𝑊)((∗‘𝐶)( ·𝑠𝑊)𝑌))) = ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
18299, 181breqtrd 5100 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)))
183164adantr 481 . . . . . . . . 9 ((𝜑𝑌 ≠ (0g𝑊)) → (𝑋 , 𝑋) ∈ ℝ)
184183, 175subge0d 11565 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → (0 ≤ ((𝑋 , 𝑋) − ((𝑋 , 𝑌) · 𝐶)) ↔ ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋)))
185182, 184mpbid 231 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · 𝐶) ≤ (𝑋 , 𝑋))
18641, 185eqbrtrd 5096 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → (((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋))
187 oveq12 7284 . . . . . . . . . . . 12 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
188187anidms 567 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
189188breq2d 5086 . . . . . . . . . 10 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
190189, 46, 14rspcdva 3562 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑌 , 𝑌))
191190adantr 481 . . . . . . . 8 ((𝜑𝑌 ≠ (0g𝑊)) → 0 ≤ (𝑌 , 𝑌))
19271, 191, 37ne0gt0d 11112 . . . . . . 7 ((𝜑𝑌 ≠ (0g𝑊)) → 0 < (𝑌 , 𝑌))
193 ledivmul2 11854 . . . . . . 7 ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) ∈ ℝ ∧ (𝑋 , 𝑋) ∈ ℝ ∧ ((𝑌 , 𝑌) ∈ ℝ ∧ 0 < (𝑌 , 𝑌))) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
194173, 183, 71, 192, 193syl112anc 1373 . . . . . 6 ((𝜑𝑌 ≠ (0g𝑊)) → ((((𝑋 , 𝑌) · (𝑌 , 𝑋)) / (𝑌 , 𝑌)) ≤ (𝑋 , 𝑋) ↔ ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌))))
195186, 194mpbid 231 . . . . 5 ((𝜑𝑌 ≠ (0g𝑊)) → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
1966, 15, 5, 31, 32ip0r 20842 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑋𝑉) → (𝑋 , (0g𝑊)) = (0g𝐹))
1977, 13, 196syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋 , (0g𝑊)) = (0g𝐹))
198197, 29eqtr4d 2781 . . . . . . . 8 (𝜑 → (𝑋 , (0g𝑊)) = 0)
199198oveq1d 7290 . . . . . . 7 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = (0 · (𝑌 , 𝑋)))
20022mul02d 11173 . . . . . . 7 (𝜑 → (0 · (𝑌 , 𝑋)) = 0)
201199, 200eqtrd 2778 . . . . . 6 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) = 0)
202 oveq12 7284 . . . . . . . . . 10 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
203202anidms 567 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
204203breq2d 5086 . . . . . . . 8 (𝑥 = 𝑋 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑋 , 𝑋)))
205204, 46, 13rspcdva 3562 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 , 𝑋))
206164, 25, 205, 190mulge0d 11552 . . . . . 6 (𝜑 → 0 ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
207201, 206eqbrtrd 5096 . . . . 5 (𝜑 → ((𝑋 , (0g𝑊)) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
2083, 195, 207pm2.61ne 3030 . . . 4 (𝜑 → ((𝑋 , 𝑌) · (𝑌 , 𝑋)) ≤ ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
209164, 205resqrtcld 15129 . . . . . . 7 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℝ)
210209recnd 11003 . . . . . 6 (𝜑 → (√‘(𝑋 , 𝑋)) ∈ ℂ)
21125, 190resqrtcld 15129 . . . . . . 7 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℝ)
212211recnd 11003 . . . . . 6 (𝜑 → (√‘(𝑌 , 𝑌)) ∈ ℂ)
213210, 212sqmuld 13876 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)))
214165sqsqrtd 15151 . . . . . 6 (𝜑 → ((√‘(𝑋 , 𝑋))↑2) = (𝑋 , 𝑋))
21526sqsqrtd 15151 . . . . . 6 (𝜑 → ((√‘(𝑌 , 𝑌))↑2) = (𝑌 , 𝑌))
216214, 215oveq12d 7293 . . . . 5 (𝜑 → (((√‘(𝑋 , 𝑋))↑2) · ((√‘(𝑌 , 𝑌))↑2)) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
217213, 216eqtrd 2778 . . . 4 (𝜑 → (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2) = ((𝑋 , 𝑋) · (𝑌 , 𝑌)))
218208, 169, 2173brtr4d 5106 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2))
219209, 211remulcld 11005 . . . 4 (𝜑 → ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ∈ ℝ)
22018absge0d 15156 . . . 4 (𝜑 → 0 ≤ (abs‘(𝑋 , 𝑌)))
221164, 205sqrtge0d 15132 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑋 , 𝑋)))
22225, 190sqrtge0d 15132 . . . . 5 (𝜑 → 0 ≤ (√‘(𝑌 , 𝑌)))
223209, 211, 221, 222mulge0d 11552 . . . 4 (𝜑 → 0 ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
224170, 219, 220, 223le2sqd 13974 . . 3 (𝜑 → ((abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))) ↔ ((abs‘(𝑋 , 𝑌))↑2) ≤ (((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌)))↑2)))
225218, 224mpbird 256 . 2 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
226 lmodgrp 20130 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
22749, 226syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
228 ipcau2.n . . . . 5 𝑁 = (norm‘𝐺)
2294, 228, 5, 15tcphnmval 24393 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
230227, 13, 229syl2anc 584 . . 3 (𝜑 → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
2314, 228, 5, 15tcphnmval 24393 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
232227, 14, 231syl2anc 584 . . 3 (𝜑 → (𝑁𝑌) = (√‘(𝑌 , 𝑌)))
233230, 232oveq12d 7293 . 2 (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = ((√‘(𝑋 , 𝑋)) · (√‘(𝑌 , 𝑌))))
234225, 233breqtrrd 5102 1 (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  cexp 13782  ccj 14807  csqrt 14944  abscabs 14945  Basecbs 16912  s cress 16941  +gcplusg 16962  .rcmulr 16963  *𝑟cstv 16964  Scalarcsca 16965   ·𝑠 cvsca 16966  ·𝑖cip 16967  0gc0g 17150  Grpcgrp 18577  -gcsg 18579  DivRingcdr 19991  LModclmod 20123  LVecclvec 20364  fldccnfld 20597  PreHilcphl 20829  normcnm 23732  ℂModcclm 24225  toℂPreHilctcph 24331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lmhm 20284  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-phl 20831  df-nm 23738  df-tng 23740  df-clm 24226  df-tcph 24333
This theorem is referenced by:  tcphcphlem1  24399  ipcau  24402
  Copyright terms: Public domain W3C validator