Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > obsne0 | Structured version Visualization version GIF version |
Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsocv.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
obsne0 | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | obsrcl 21036 | . . . . 5 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) | |
2 | phllvec 20940 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
3 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | 3 | lvecdrng 20473 | . . . . 5 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
5 | 1, 2, 4 | 3syl 18 | . . . 4 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (Scalar‘𝑊) ∈ DivRing) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (Scalar‘𝑊) ∈ DivRing) |
7 | eqid 2736 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
8 | eqid 2736 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 7, 8 | drngunz 20111 | . . 3 ⊢ ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
10 | 6, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
11 | eqid 2736 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
12 | 11, 3, 8 | obsipid 21035 | . . . . 5 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴(·𝑖‘𝑊)𝐴) = (1r‘(Scalar‘𝑊))) |
13 | 12 | eqeq1d 2738 | . . . 4 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ (1r‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)))) |
14 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | 14 | obsss 21037 | . . . . . 6 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊)) |
16 | 15 | sselda 3932 | . . . . 5 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (Base‘𝑊)) |
17 | obsocv.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
18 | 3, 11, 14, 7, 17 | ipeq0 20949 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ (Base‘𝑊)) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
19 | 1, 16, 18 | syl2an2r 682 | . . . 4 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
20 | 13, 19 | bitr3d 280 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((1r‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
21 | 20 | necon3bid 2985 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)) ↔ 𝐴 ≠ 0 )) |
22 | 10, 21 | mpbid 231 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 Scalarcsca 17062 ·𝑖cip 17064 0gc0g 17247 1rcur 19832 DivRingcdr 20093 LVecclvec 20470 PreHilcphl 20935 OBasiscobs 21015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-ghm 18928 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-drng 20095 df-lmod 20231 df-lmhm 20390 df-lvec 20471 df-sra 20540 df-rgmod 20541 df-phl 20937 df-obs 21018 |
This theorem is referenced by: obselocv 21041 obs2ss 21042 obslbs 21043 |
Copyright terms: Public domain | W3C validator |