| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsne0 | Structured version Visualization version GIF version | ||
| Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| obsocv.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| obsne0 | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | obsrcl 21639 | . . . . 5 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) | |
| 2 | phllvec 21545 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | 3 | lvecdrng 21019 | . . . . 5 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
| 5 | 1, 2, 4 | 3syl 18 | . . . 4 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (Scalar‘𝑊) ∈ DivRing) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (Scalar‘𝑊) ∈ DivRing) |
| 7 | eqid 2730 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 8 | eqid 2730 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 7, 8 | drngunz 20663 | . . 3 ⊢ ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
| 10 | 6, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
| 11 | eqid 2730 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 12 | 11, 3, 8 | obsipid 21638 | . . . . 5 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴(·𝑖‘𝑊)𝐴) = (1r‘(Scalar‘𝑊))) |
| 13 | 12 | eqeq1d 2732 | . . . 4 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ (1r‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)))) |
| 14 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14 | obsss 21640 | . . . . . 6 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊)) |
| 16 | 15 | sselda 3949 | . . . . 5 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (Base‘𝑊)) |
| 17 | obsocv.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 18 | 3, 11, 14, 7, 17 | ipeq0 21554 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ (Base‘𝑊)) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
| 19 | 1, 16, 18 | syl2an2r 685 | . . . 4 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
| 20 | 13, 19 | bitr3d 281 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((1r‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
| 21 | 20 | necon3bid 2970 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)) ↔ 𝐴 ≠ 0 )) |
| 22 | 10, 21 | mpbid 232 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑖cip 17232 0gc0g 17409 1rcur 20097 DivRingcdr 20645 LVecclvec 21016 PreHilcphl 21540 OBasiscobs 21618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-drng 20647 df-lmod 20775 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-phl 21542 df-obs 21621 |
| This theorem is referenced by: obselocv 21644 obs2ss 21645 obslbs 21646 |
| Copyright terms: Public domain | W3C validator |