| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsne0 | Structured version Visualization version GIF version | ||
| Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| obsocv.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| obsne0 | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | obsrcl 21668 | . . . . 5 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) | |
| 2 | phllvec 21574 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 3 | eqid 2734 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | 3 | lvecdrng 21048 | . . . . 5 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
| 5 | 1, 2, 4 | 3syl 18 | . . . 4 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (Scalar‘𝑊) ∈ DivRing) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (Scalar‘𝑊) ∈ DivRing) |
| 7 | eqid 2734 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 8 | eqid 2734 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 7, 8 | drngunz 20692 | . . 3 ⊢ ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
| 10 | 6, 9 | syl 17 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
| 11 | eqid 2734 | . . . . . 6 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 12 | 11, 3, 8 | obsipid 21667 | . . . . 5 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴(·𝑖‘𝑊)𝐴) = (1r‘(Scalar‘𝑊))) |
| 13 | 12 | eqeq1d 2736 | . . . 4 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ (1r‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)))) |
| 14 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14 | obsss 21669 | . . . . . 6 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊)) |
| 16 | 15 | sselda 3956 | . . . . 5 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (Base‘𝑊)) |
| 17 | obsocv.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 18 | 3, 11, 14, 7, 17 | ipeq0 21583 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ (Base‘𝑊)) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
| 19 | 1, 16, 18 | syl2an2r 685 | . . . 4 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((𝐴(·𝑖‘𝑊)𝐴) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
| 20 | 13, 19 | bitr3d 281 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((1r‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) ↔ 𝐴 = 0 )) |
| 21 | 20 | necon3bid 2975 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → ((1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)) ↔ 𝐴 ≠ 0 )) |
| 22 | 10, 21 | mpbid 232 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Scalarcsca 17259 ·𝑖cip 17261 0gc0g 17438 1rcur 20126 DivRingcdr 20674 LVecclvec 21045 PreHilcphl 21569 OBasiscobs 21647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-plusg 17269 df-mulr 17270 df-sca 17272 df-vsca 17273 df-ip 17274 df-0g 17440 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18904 df-minusg 18905 df-ghm 19181 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-drng 20676 df-lmod 20804 df-lmhm 20965 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-phl 21571 df-obs 21650 |
| This theorem is referenced by: obselocv 21673 obs2ss 21674 obslbs 21675 |
| Copyright terms: Public domain | W3C validator |