![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsne0 | Structured version Visualization version GIF version |
Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsocv.z | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
obsne0 | β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β π΄ β 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | obsrcl 21662 | . . . . 5 β’ (π΅ β (OBasisβπ) β π β PreHil) | |
2 | phllvec 21566 | . . . . 5 β’ (π β PreHil β π β LVec) | |
3 | eqid 2727 | . . . . . 6 β’ (Scalarβπ) = (Scalarβπ) | |
4 | 3 | lvecdrng 20995 | . . . . 5 β’ (π β LVec β (Scalarβπ) β DivRing) |
5 | 1, 2, 4 | 3syl 18 | . . . 4 β’ (π΅ β (OBasisβπ) β (Scalarβπ) β DivRing) |
6 | 5 | adantr 479 | . . 3 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β (Scalarβπ) β DivRing) |
7 | eqid 2727 | . . . 4 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
8 | eqid 2727 | . . . 4 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
9 | 7, 8 | drngunz 20648 | . . 3 β’ ((Scalarβπ) β DivRing β (1rβ(Scalarβπ)) β (0gβ(Scalarβπ))) |
10 | 6, 9 | syl 17 | . 2 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β (1rβ(Scalarβπ)) β (0gβ(Scalarβπ))) |
11 | eqid 2727 | . . . . . 6 β’ (Β·πβπ) = (Β·πβπ) | |
12 | 11, 3, 8 | obsipid 21661 | . . . . 5 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β (π΄(Β·πβπ)π΄) = (1rβ(Scalarβπ))) |
13 | 12 | eqeq1d 2729 | . . . 4 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β ((π΄(Β·πβπ)π΄) = (0gβ(Scalarβπ)) β (1rβ(Scalarβπ)) = (0gβ(Scalarβπ)))) |
14 | eqid 2727 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
15 | 14 | obsss 21663 | . . . . . 6 β’ (π΅ β (OBasisβπ) β π΅ β (Baseβπ)) |
16 | 15 | sselda 3980 | . . . . 5 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β π΄ β (Baseβπ)) |
17 | obsocv.z | . . . . . 6 β’ 0 = (0gβπ) | |
18 | 3, 11, 14, 7, 17 | ipeq0 21575 | . . . . 5 β’ ((π β PreHil β§ π΄ β (Baseβπ)) β ((π΄(Β·πβπ)π΄) = (0gβ(Scalarβπ)) β π΄ = 0 )) |
19 | 1, 16, 18 | syl2an2r 683 | . . . 4 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β ((π΄(Β·πβπ)π΄) = (0gβ(Scalarβπ)) β π΄ = 0 )) |
20 | 13, 19 | bitr3d 280 | . . 3 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β ((1rβ(Scalarβπ)) = (0gβ(Scalarβπ)) β π΄ = 0 )) |
21 | 20 | necon3bid 2981 | . 2 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β ((1rβ(Scalarβπ)) β (0gβ(Scalarβπ)) β π΄ β 0 )) |
22 | 10, 21 | mpbid 231 | 1 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β π΄ β 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2936 βcfv 6551 (class class class)co 7424 Basecbs 17185 Scalarcsca 17241 Β·πcip 17243 0gc0g 17426 1rcur 20126 DivRingcdr 20629 LVecclvec 20992 PreHilcphl 21561 OBasiscobs 21641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-tpos 8236 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-plusg 17251 df-mulr 17252 df-sca 17254 df-vsca 17255 df-ip 17256 df-0g 17428 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18898 df-minusg 18899 df-ghm 19173 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20278 df-dvdsr 20301 df-unit 20302 df-drng 20631 df-lmod 20750 df-lmhm 20912 df-lvec 20993 df-sra 21063 df-rgmod 21064 df-phl 21563 df-obs 21644 |
This theorem is referenced by: obselocv 21667 obs2ss 21668 obslbs 21669 |
Copyright terms: Public domain | W3C validator |