| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllvec 21545 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21020 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LModclmod 20773 LVecclvec 21016 PreHilcphl 21540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-iota 6467 df-fv 6522 df-ov 7393 df-lvec 21017 df-phl 21542 |
| This theorem is referenced by: iporthcom 21551 ip0l 21552 ip0r 21553 ipdir 21555 ipdi 21556 ip2di 21557 ipsubdir 21558 ipsubdi 21559 ip2subdi 21560 ipass 21561 ipassr 21562 ip2eq 21569 phssip 21574 phlssphl 21575 ocvlss 21588 ocvin 21590 ocvlsp 21592 ocvz 21594 ocv1 21595 lsmcss 21608 pjdm2 21627 pjff 21628 pjf2 21630 pjfo 21631 ocvpj 21633 obselocv 21644 obslbs 21646 phclm 25139 ipcau2 25141 tcphcphlem1 25142 tcphcphlem2 25143 tcphcph 25144 pjth 25346 |
| Copyright terms: Public domain | W3C validator |