| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllvec 21594 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21069 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LModclmod 20822 LVecclvec 21065 PreHilcphl 21589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-iota 6489 df-fv 6544 df-ov 7413 df-lvec 21066 df-phl 21591 |
| This theorem is referenced by: iporthcom 21600 ip0l 21601 ip0r 21602 ipdir 21604 ipdi 21605 ip2di 21606 ipsubdir 21607 ipsubdi 21608 ip2subdi 21609 ipass 21610 ipassr 21611 ip2eq 21618 phssip 21623 phlssphl 21624 ocvlss 21637 ocvin 21639 ocvlsp 21641 ocvz 21643 ocv1 21644 lsmcss 21657 pjdm2 21676 pjff 21677 pjf2 21679 pjfo 21680 ocvpj 21682 obselocv 21693 obslbs 21695 phclm 25189 ipcau2 25191 tcphcphlem1 25192 tcphcphlem2 25193 tcphcph 25194 pjth 25396 |
| Copyright terms: Public domain | W3C validator |