| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllvec 21576 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21050 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 LModclmod 20803 LVecclvec 21046 PreHilcphl 21571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-iota 6445 df-fv 6497 df-ov 7358 df-lvec 21047 df-phl 21573 |
| This theorem is referenced by: iporthcom 21582 ip0l 21583 ip0r 21584 ipdir 21586 ipdi 21587 ip2di 21588 ipsubdir 21589 ipsubdi 21590 ip2subdi 21591 ipass 21592 ipassr 21593 ip2eq 21600 phssip 21605 phlssphl 21606 ocvlss 21619 ocvin 21621 ocvlsp 21623 ocvz 21625 ocv1 21626 lsmcss 21639 pjdm2 21658 pjff 21659 pjf2 21661 pjfo 21662 ocvpj 21664 obselocv 21675 obslbs 21677 phclm 25169 ipcau2 25171 tcphcphlem1 25172 tcphcphlem2 25173 tcphcph 25174 pjth 25376 |
| Copyright terms: Public domain | W3C validator |