| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllvec 21559 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21033 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 LModclmod 20786 LVecclvec 21029 PreHilcphl 21554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-iota 6433 df-fv 6485 df-ov 7344 df-lvec 21030 df-phl 21556 |
| This theorem is referenced by: iporthcom 21565 ip0l 21566 ip0r 21567 ipdir 21569 ipdi 21570 ip2di 21571 ipsubdir 21572 ipsubdi 21573 ip2subdi 21574 ipass 21575 ipassr 21576 ip2eq 21583 phssip 21588 phlssphl 21589 ocvlss 21602 ocvin 21604 ocvlsp 21606 ocvz 21608 ocv1 21609 lsmcss 21622 pjdm2 21641 pjff 21642 pjf2 21644 pjfo 21645 ocvpj 21647 obselocv 21658 obslbs 21660 phclm 25152 ipcau2 25154 tcphcphlem1 25155 tcphcphlem2 25156 tcphcph 25157 pjth 25359 |
| Copyright terms: Public domain | W3C validator |