| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllvec 21554 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21028 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LModclmod 20781 LVecclvec 21024 PreHilcphl 21549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-iota 6442 df-fv 6494 df-ov 7356 df-lvec 21025 df-phl 21551 |
| This theorem is referenced by: iporthcom 21560 ip0l 21561 ip0r 21562 ipdir 21564 ipdi 21565 ip2di 21566 ipsubdir 21567 ipsubdi 21568 ip2subdi 21569 ipass 21570 ipassr 21571 ip2eq 21578 phssip 21583 phlssphl 21584 ocvlss 21597 ocvin 21599 ocvlsp 21601 ocvz 21603 ocv1 21604 lsmcss 21617 pjdm2 21636 pjff 21637 pjf2 21639 pjfo 21640 ocvpj 21642 obselocv 21653 obslbs 21655 phclm 25148 ipcau2 25150 tcphcphlem1 25151 tcphcphlem2 25152 tcphcph 25153 pjth 25355 |
| Copyright terms: Public domain | W3C validator |