Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllvec 20834 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
2 | lveclmod 20368 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 LModclmod 20123 LVecclvec 20364 PreHilcphl 20829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-iota 6391 df-fv 6441 df-ov 7278 df-lvec 20365 df-phl 20831 |
This theorem is referenced by: iporthcom 20840 ip0l 20841 ip0r 20842 ipdir 20844 ipdi 20845 ip2di 20846 ipsubdir 20847 ipsubdi 20848 ip2subdi 20849 ipass 20850 ipassr 20851 ip2eq 20858 phssip 20863 phlssphl 20864 ocvlss 20877 ocvin 20879 ocvlsp 20881 ocvz 20883 ocv1 20884 lsmcss 20897 pjdm2 20918 pjff 20919 pjf2 20921 pjfo 20922 ocvpj 20924 obselocv 20935 obslbs 20937 phclm 24396 ipcau2 24398 tcphcphlem1 24399 tcphcphlem2 24400 tcphcph 24401 pjth 24603 |
Copyright terms: Public domain | W3C validator |