| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllvec 21576 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21051 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 LModclmod 20804 LVecclvec 21047 PreHilcphl 21571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5274 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-iota 6481 df-fv 6536 df-ov 7403 df-lvec 21048 df-phl 21573 |
| This theorem is referenced by: iporthcom 21582 ip0l 21583 ip0r 21584 ipdir 21586 ipdi 21587 ip2di 21588 ipsubdir 21589 ipsubdi 21590 ip2subdi 21591 ipass 21592 ipassr 21593 ip2eq 21600 phssip 21605 phlssphl 21606 ocvlss 21619 ocvin 21621 ocvlsp 21623 ocvz 21625 ocv1 21626 lsmcss 21639 pjdm2 21658 pjff 21659 pjf2 21661 pjfo 21662 ocvpj 21664 obselocv 21675 obslbs 21677 phclm 25171 ipcau2 25173 tcphcphlem1 25174 tcphcphlem2 25175 tcphcph 25176 pjth 25378 |
| Copyright terms: Public domain | W3C validator |