![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllvec 21665 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
2 | lveclmod 21123 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 LModclmod 20875 LVecclvec 21119 PreHilcphl 21660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-iota 6516 df-fv 6571 df-ov 7434 df-lvec 21120 df-phl 21662 |
This theorem is referenced by: iporthcom 21671 ip0l 21672 ip0r 21673 ipdir 21675 ipdi 21676 ip2di 21677 ipsubdir 21678 ipsubdi 21679 ip2subdi 21680 ipass 21681 ipassr 21682 ip2eq 21689 phssip 21694 phlssphl 21695 ocvlss 21708 ocvin 21710 ocvlsp 21712 ocvz 21714 ocv1 21715 lsmcss 21728 pjdm2 21749 pjff 21750 pjf2 21752 pjfo 21753 ocvpj 21755 obselocv 21766 obslbs 21768 phclm 25280 ipcau2 25282 tcphcphlem1 25283 tcphcphlem2 25284 tcphcph 25285 pjth 25487 |
Copyright terms: Public domain | W3C validator |