![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllvec 21670 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
2 | lveclmod 21128 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 LModclmod 20880 LVecclvec 21124 PreHilcphl 21665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6525 df-fv 6581 df-ov 7451 df-lvec 21125 df-phl 21667 |
This theorem is referenced by: iporthcom 21676 ip0l 21677 ip0r 21678 ipdir 21680 ipdi 21681 ip2di 21682 ipsubdir 21683 ipsubdi 21684 ip2subdi 21685 ipass 21686 ipassr 21687 ip2eq 21694 phssip 21699 phlssphl 21700 ocvlss 21713 ocvin 21715 ocvlsp 21717 ocvz 21719 ocv1 21720 lsmcss 21733 pjdm2 21754 pjff 21755 pjf2 21757 pjfo 21758 ocvpj 21760 obselocv 21771 obslbs 21773 phclm 25285 ipcau2 25287 tcphcphlem1 25288 tcphcphlem2 25289 tcphcph 25290 pjth 25492 |
Copyright terms: Public domain | W3C validator |