| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version | ||
| Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllvec 21538 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21013 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LModclmod 20766 LVecclvec 21009 PreHilcphl 21533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-iota 6464 df-fv 6519 df-ov 7390 df-lvec 21010 df-phl 21535 |
| This theorem is referenced by: iporthcom 21544 ip0l 21545 ip0r 21546 ipdir 21548 ipdi 21549 ip2di 21550 ipsubdir 21551 ipsubdi 21552 ip2subdi 21553 ipass 21554 ipassr 21555 ip2eq 21562 phssip 21567 phlssphl 21568 ocvlss 21581 ocvin 21583 ocvlsp 21585 ocvz 21587 ocv1 21588 lsmcss 21601 pjdm2 21620 pjff 21621 pjf2 21623 pjfo 21624 ocvpj 21626 obselocv 21637 obslbs 21639 phclm 25132 ipcau2 25134 tcphcphlem1 25135 tcphcphlem2 25136 tcphcph 25137 pjth 25339 |
| Copyright terms: Public domain | W3C validator |