Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllvec 20746 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
2 | lveclmod 20283 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 LModclmod 20038 LVecclvec 20279 PreHilcphl 20741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-iota 6376 df-fv 6426 df-ov 7258 df-lvec 20280 df-phl 20743 |
This theorem is referenced by: iporthcom 20752 ip0l 20753 ip0r 20754 ipdir 20756 ipdi 20757 ip2di 20758 ipsubdir 20759 ipsubdi 20760 ip2subdi 20761 ipass 20762 ipassr 20763 ip2eq 20770 phssip 20775 phlssphl 20776 ocvlss 20789 ocvin 20791 ocvlsp 20793 ocvz 20795 ocv1 20796 lsmcss 20809 pjdm2 20828 pjff 20829 pjf2 20831 pjfo 20832 ocvpj 20834 obselocv 20845 obslbs 20847 phclm 24301 ipcau2 24303 tcphcphlem1 24304 tcphcphlem2 24305 tcphcph 24306 pjth 24508 |
Copyright terms: Public domain | W3C validator |