Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phllmod | Structured version Visualization version GIF version |
Description: A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phllmod | ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllvec 20822 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | |
2 | lveclmod 20356 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 LModclmod 20111 LVecclvec 20352 PreHilcphl 20817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5229 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-iota 6385 df-fv 6435 df-ov 7271 df-lvec 20353 df-phl 20819 |
This theorem is referenced by: iporthcom 20828 ip0l 20829 ip0r 20830 ipdir 20832 ipdi 20833 ip2di 20834 ipsubdir 20835 ipsubdi 20836 ip2subdi 20837 ipass 20838 ipassr 20839 ip2eq 20846 phssip 20851 phlssphl 20852 ocvlss 20865 ocvin 20867 ocvlsp 20869 ocvz 20871 ocv1 20872 lsmcss 20885 pjdm2 20906 pjff 20907 pjf2 20909 pjfo 20910 ocvpj 20912 obselocv 20923 obslbs 20925 phclm 24384 ipcau2 24386 tcphcphlem1 24387 tcphcphlem2 24388 tcphcph 24389 pjth 24591 |
Copyright terms: Public domain | W3C validator |