MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr0v Structured version   Visualization version   GIF version

Theorem cplgr0v 27697
Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgr0v ((𝐺𝑊𝑉 = ∅) → 𝐺 ∈ ComplGraph)

Proof of Theorem cplgr0v
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 rzal 4436 . . 3 (𝑉 = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
21adantl 481 . 2 ((𝐺𝑊𝑉 = ∅) → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
3 cplgr0v.v . . . 4 𝑉 = (Vtx‘𝐺)
43iscplgr 27685 . . 3 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
54adantr 480 . 2 ((𝐺𝑊𝑉 = ∅) → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
62, 5mpbird 256 1 ((𝐺𝑊𝑉 = ∅) → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  c0 4253  cfv 6418  Vtxcvtx 27269  UnivVtxcuvtx 27655  ComplGraphccplgr 27679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-uvtx 27656  df-cplgr 27681
This theorem is referenced by:  cusgr0v  27698
  Copyright terms: Public domain W3C validator