| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplgr0v | Structured version Visualization version GIF version | ||
| Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cplgr0v | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzal 4489 | . . 3 ⊢ (𝑉 = ∅ → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 3 | cplgr0v.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | iscplgr 29399 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 6 | 2, 5 | mpbird 257 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ ComplGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∅c0 4313 ‘cfv 6536 Vtxcvtx 28980 UnivVtxcuvtx 29369 ComplGraphccplgr 29393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-uvtx 29370 df-cplgr 29395 |
| This theorem is referenced by: cusgr0v 29412 |
| Copyright terms: Public domain | W3C validator |