MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr0v Structured version   Visualization version   GIF version

Theorem cplgr0v 27208
Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgr0v ((𝐺𝑊𝑉 = ∅) → 𝐺 ∈ ComplGraph)

Proof of Theorem cplgr0v
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 rzal 4452 . . 3 (𝑉 = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
21adantl 484 . 2 ((𝐺𝑊𝑉 = ∅) → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
3 cplgr0v.v . . . 4 𝑉 = (Vtx‘𝐺)
43iscplgr 27196 . . 3 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
54adantr 483 . 2 ((𝐺𝑊𝑉 = ∅) → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
62, 5mpbird 259 1 ((𝐺𝑊𝑉 = ∅) → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  c0 4290  cfv 6354  Vtxcvtx 26780  UnivVtxcuvtx 27166  ComplGraphccplgr 27190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7158  df-uvtx 27167  df-cplgr 27192
This theorem is referenced by:  cusgr0v  27209
  Copyright terms: Public domain W3C validator