MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prub Structured version   Visualization version   GIF version

Theorem prub 10681
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
prub (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))

Proof of Theorem prub
StepHypRef Expression
1 eleq1 2826 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
21biimpcd 248 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
32adantl 481 . . . . 5 ((𝐴P𝐵𝐴) → (𝐵 = 𝐶𝐶𝐴))
4 prcdnq 10680 . . . . 5 ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))
53, 4jaod 855 . . . 4 ((𝐴P𝐵𝐴) → ((𝐵 = 𝐶𝐶 <Q 𝐵) → 𝐶𝐴))
65con3d 152 . . 3 ((𝐴P𝐵𝐴) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
76adantr 480 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
8 elprnq 10678 . . 3 ((𝐴P𝐵𝐴) → 𝐵Q)
9 ltsonq 10656 . . . 4 <Q Or Q
10 sotric 5522 . . . 4 (( <Q Or Q ∧ (𝐵Q𝐶Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
119, 10mpan 686 . . 3 ((𝐵Q𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
128, 11sylan 579 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
137, 12sylibrd 258 1 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070   Or wor 5493  Qcnq 10539   <Q cltq 10545  Pcnp 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-ltpq 10597  df-enq 10598  df-nq 10599  df-ltnq 10605  df-np 10668
This theorem is referenced by:  genpnnp  10692  psslinpr  10718  ltexprlem6  10728  ltexprlem7  10729  prlem936  10734  reclem4pr  10737
  Copyright terms: Public domain W3C validator