![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prub | Structured version Visualization version GIF version |
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prub | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
2 | 1 | biimpcd 249 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
3 | 2 | adantl 483 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
4 | prcdnq 10936 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴)) | |
5 | 3, 4 | jaod 858 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ((𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵) → 𝐶 ∈ 𝐴)) |
6 | 5 | con3d 152 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
7 | 6 | adantr 482 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
8 | elprnq 10934 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) | |
9 | ltsonq 10912 | . . . 4 ⊢ <Q Or Q | |
10 | sotric 5578 | . . . 4 ⊢ (( <Q Or Q ∧ (𝐵 ∈ Q ∧ 𝐶 ∈ Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) | |
11 | 9, 10 | mpan 689 | . . 3 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
12 | 8, 11 | sylan 581 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
13 | 7, 12 | sylibrd 259 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 class class class wbr 5110 Or wor 5549 Qcnq 10795 <Q cltq 10801 Pcnp 10802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-oadd 8421 df-omul 8422 df-er 8655 df-ni 10815 df-mi 10817 df-lti 10818 df-ltpq 10853 df-enq 10854 df-nq 10855 df-ltnq 10861 df-np 10924 |
This theorem is referenced by: genpnnp 10948 psslinpr 10974 ltexprlem6 10984 ltexprlem7 10985 prlem936 10990 reclem4pr 10993 |
Copyright terms: Public domain | W3C validator |