Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prub | Structured version Visualization version GIF version |
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prub | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2828 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
2 | 1 | biimpcd 248 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
4 | prcdnq 10750 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴)) | |
5 | 3, 4 | jaod 856 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ((𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵) → 𝐶 ∈ 𝐴)) |
6 | 5 | con3d 152 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
7 | 6 | adantr 481 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
8 | elprnq 10748 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) | |
9 | ltsonq 10726 | . . . 4 ⊢ <Q Or Q | |
10 | sotric 5532 | . . . 4 ⊢ (( <Q Or Q ∧ (𝐵 ∈ Q ∧ 𝐶 ∈ Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) | |
11 | 9, 10 | mpan 687 | . . 3 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
12 | 8, 11 | sylan 580 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
13 | 7, 12 | sylibrd 258 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 Or wor 5503 Qcnq 10609 <Q cltq 10615 Pcnp 10616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-oadd 8292 df-omul 8293 df-er 8481 df-ni 10629 df-mi 10631 df-lti 10632 df-ltpq 10667 df-enq 10668 df-nq 10669 df-ltnq 10675 df-np 10738 |
This theorem is referenced by: genpnnp 10762 psslinpr 10788 ltexprlem6 10798 ltexprlem7 10799 prlem936 10804 reclem4pr 10807 |
Copyright terms: Public domain | W3C validator |