| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prub | Structured version Visualization version GIF version | ||
| Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prub | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 2 | 1 | biimpcd 249 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
| 4 | prcdnq 11012 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴)) | |
| 5 | 3, 4 | jaod 859 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ((𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵) → 𝐶 ∈ 𝐴)) |
| 6 | 5 | con3d 152 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
| 8 | elprnq 11010 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) | |
| 9 | ltsonq 10988 | . . . 4 ⊢ <Q Or Q | |
| 10 | sotric 5596 | . . . 4 ⊢ (( <Q Or Q ∧ (𝐵 ∈ Q ∧ 𝐶 ∈ Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) | |
| 11 | 9, 10 | mpan 690 | . . 3 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
| 12 | 8, 11 | sylan 580 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
| 13 | 7, 12 | sylibrd 259 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 Or wor 5565 Qcnq 10871 <Q cltq 10877 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-oadd 8489 df-omul 8490 df-er 8724 df-ni 10891 df-mi 10893 df-lti 10894 df-ltpq 10929 df-enq 10930 df-nq 10931 df-ltnq 10937 df-np 11000 |
| This theorem is referenced by: genpnnp 11024 psslinpr 11050 ltexprlem6 11060 ltexprlem7 11061 prlem936 11066 reclem4pr 11069 |
| Copyright terms: Public domain | W3C validator |