MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prub Structured version   Visualization version   GIF version

Theorem prub 10986
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
prub (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))

Proof of Theorem prub
StepHypRef Expression
1 eleq1 2813 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
21biimpcd 248 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
32adantl 481 . . . . 5 ((𝐴P𝐵𝐴) → (𝐵 = 𝐶𝐶𝐴))
4 prcdnq 10985 . . . . 5 ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))
53, 4jaod 856 . . . 4 ((𝐴P𝐵𝐴) → ((𝐵 = 𝐶𝐶 <Q 𝐵) → 𝐶𝐴))
65con3d 152 . . 3 ((𝐴P𝐵𝐴) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
76adantr 480 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
8 elprnq 10983 . . 3 ((𝐴P𝐵𝐴) → 𝐵Q)
9 ltsonq 10961 . . . 4 <Q Or Q
10 sotric 5607 . . . 4 (( <Q Or Q ∧ (𝐵Q𝐶Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
119, 10mpan 687 . . 3 ((𝐵Q𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
128, 11sylan 579 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
137, 12sylibrd 259 1 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098   class class class wbr 5139   Or wor 5578  Qcnq 10844   <Q cltq 10850  Pcnp 10851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-oadd 8466  df-omul 8467  df-er 8700  df-ni 10864  df-mi 10866  df-lti 10867  df-ltpq 10902  df-enq 10903  df-nq 10904  df-ltnq 10910  df-np 10973
This theorem is referenced by:  genpnnp  10997  psslinpr  11023  ltexprlem6  11033  ltexprlem7  11034  prlem936  11039  reclem4pr  11042
  Copyright terms: Public domain W3C validator