![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prub | Structured version Visualization version GIF version |
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prub | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
2 | 1 | biimpcd 249 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
4 | prcdnq 11031 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴)) | |
5 | 3, 4 | jaod 859 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ((𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵) → 𝐶 ∈ 𝐴)) |
6 | 5 | con3d 152 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
7 | 6 | adantr 480 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
8 | elprnq 11029 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) | |
9 | ltsonq 11007 | . . . 4 ⊢ <Q Or Q | |
10 | sotric 5626 | . . . 4 ⊢ (( <Q Or Q ∧ (𝐵 ∈ Q ∧ 𝐶 ∈ Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) | |
11 | 9, 10 | mpan 690 | . . 3 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
12 | 8, 11 | sylan 580 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
13 | 7, 12 | sylibrd 259 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 Or wor 5596 Qcnq 10890 <Q cltq 10896 Pcnp 10897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-oadd 8509 df-omul 8510 df-er 8744 df-ni 10910 df-mi 10912 df-lti 10913 df-ltpq 10948 df-enq 10949 df-nq 10950 df-ltnq 10956 df-np 11019 |
This theorem is referenced by: genpnnp 11043 psslinpr 11069 ltexprlem6 11079 ltexprlem7 11080 prlem936 11085 reclem4pr 11088 |
Copyright terms: Public domain | W3C validator |