Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prub | Structured version Visualization version GIF version |
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prub | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
2 | 1 | biimpcd 248 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
4 | prcdnq 10749 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴)) | |
5 | 3, 4 | jaod 856 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ((𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵) → 𝐶 ∈ 𝐴)) |
6 | 5 | con3d 152 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
7 | 6 | adantr 481 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
8 | elprnq 10747 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) | |
9 | ltsonq 10725 | . . . 4 ⊢ <Q Or Q | |
10 | sotric 5531 | . . . 4 ⊢ (( <Q Or Q ∧ (𝐵 ∈ Q ∧ 𝐶 ∈ Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) | |
11 | 9, 10 | mpan 687 | . . 3 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
12 | 8, 11 | sylan 580 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
13 | 7, 12 | sylibrd 258 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 Or wor 5502 Qcnq 10608 <Q cltq 10614 Pcnp 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 df-omul 8302 df-er 8498 df-ni 10628 df-mi 10630 df-lti 10631 df-ltpq 10666 df-enq 10667 df-nq 10668 df-ltnq 10674 df-np 10737 |
This theorem is referenced by: genpnnp 10761 psslinpr 10787 ltexprlem6 10797 ltexprlem7 10798 prlem936 10803 reclem4pr 10806 |
Copyright terms: Public domain | W3C validator |