MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prub Structured version   Visualization version   GIF version

Theorem prub 10214
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
prub (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))

Proof of Theorem prub
StepHypRef Expression
1 eleq1 2853 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
21biimpcd 241 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
32adantl 474 . . . . 5 ((𝐴P𝐵𝐴) → (𝐵 = 𝐶𝐶𝐴))
4 prcdnq 10213 . . . . 5 ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))
53, 4jaod 845 . . . 4 ((𝐴P𝐵𝐴) → ((𝐵 = 𝐶𝐶 <Q 𝐵) → 𝐶𝐴))
65con3d 150 . . 3 ((𝐴P𝐵𝐴) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
76adantr 473 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
8 elprnq 10211 . . 3 ((𝐴P𝐵𝐴) → 𝐵Q)
9 ltsonq 10189 . . . 4 <Q Or Q
10 sotric 5353 . . . 4 (( <Q Or Q ∧ (𝐵Q𝐶Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
119, 10mpan 677 . . 3 ((𝐵Q𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
128, 11sylan 572 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
137, 12sylibrd 251 1 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050   class class class wbr 4929   Or wor 5325  Qcnq 10072   <Q cltq 10078  Pcnp 10079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-oadd 7909  df-omul 7910  df-er 8089  df-ni 10092  df-mi 10094  df-lti 10095  df-ltpq 10130  df-enq 10131  df-nq 10132  df-ltnq 10138  df-np 10201
This theorem is referenced by:  genpnnp  10225  psslinpr  10251  ltexprlem6  10261  ltexprlem7  10262  prlem936  10267  reclem4pr  10270
  Copyright terms: Public domain W3C validator