| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psasym | Structured version Visualization version GIF version | ||
| Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008.) |
| Ref | Expression |
|---|---|
| psasym | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pslem 18478 | . . 3 ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵))) | |
| 2 | 1 | simp3d 1144 | . 2 ⊢ (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵)) |
| 3 | 2 | 3impib 1116 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 class class class wbr 5092 PosetRelcps 18470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-res 5631 df-ps 18472 |
| This theorem is referenced by: psss 18486 ordtt1 23264 ordthauslem 23268 |
| Copyright terms: Public domain | W3C validator |