MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psasym Structured version   Visualization version   GIF version

Theorem psasym 18621
Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008.)
Assertion
Ref Expression
psasym ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)

Proof of Theorem psasym
StepHypRef Expression
1 pslem 18617 . . 3 (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
21simp3d 1145 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵))
323impib 1117 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108   cuni 4907   class class class wbr 5143  PosetRelcps 18609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-res 5697  df-ps 18611
This theorem is referenced by:  psss  18625  ordtt1  23387  ordthauslem  23391
  Copyright terms: Public domain W3C validator