![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psasym | Structured version Visualization version GIF version |
Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
psasym | ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pslem 18558 | . . 3 ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵))) | |
2 | 1 | simp3d 1142 | . 2 ⊢ (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵)) |
3 | 2 | 3impib 1114 | 1 ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∪ cuni 4904 class class class wbr 5143 PosetRelcps 18550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-res 5685 df-ps 18552 |
This theorem is referenced by: psss 18566 ordtt1 23277 ordthauslem 23281 |
Copyright terms: Public domain | W3C validator |