MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psasym Structured version   Visualization version   GIF version

Theorem psasym 18533
Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008.)
Assertion
Ref Expression
psasym ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)

Proof of Theorem psasym
StepHypRef Expression
1 pslem 18529 . . 3 (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴𝑅𝐴) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
21simp3d 1144 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵))
323impib 1116 1 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106   cuni 4908   class class class wbr 5148  PosetRelcps 18521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-res 5688  df-ps 18523
This theorem is referenced by:  psss  18537  ordtt1  23103  ordthauslem  23107
  Copyright terms: Public domain W3C validator