MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrn Structured version   Visualization version   GIF version

Theorem psrn 18524
Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
psref.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psrn (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)

Proof of Theorem psrn
StepHypRef Expression
1 psref.1 . 2 𝑋 = dom 𝑅
2 psdmrn 18522 . . 3 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
3 eqtr3 2758 . . 3 ((dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅) → dom 𝑅 = ran 𝑅)
42, 3syl 17 . 2 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
51, 4eqtrid 2784 1 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   cuni 4907  dom cdm 5675  ran crn 5676  PosetRelcps 18513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ps 18515
This theorem is referenced by:  cnvtsr  18537  ordtbas2  22686  ordtcnv  22696  ordtrest2  22699
  Copyright terms: Public domain W3C validator