| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrn | Structured version Visualization version GIF version | ||
| Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| psref.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| psrn | ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psref.1 | . 2 ⊢ 𝑋 = dom 𝑅 | |
| 2 | psdmrn 18487 | . . 3 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
| 3 | eqtr3 2755 | . . 3 ⊢ ((dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅) → dom 𝑅 = ran 𝑅) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
| 5 | 1, 4 | eqtrid 2780 | 1 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∪ cuni 4860 dom cdm 5621 ran crn 5622 PosetRelcps 18478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ps 18480 |
| This theorem is referenced by: cnvtsr 18502 ordtbas2 23126 ordtcnv 23136 ordtrest2 23139 |
| Copyright terms: Public domain | W3C validator |