![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrn | Structured version Visualization version GIF version |
Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
psref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psrn | ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psref.1 | . 2 ⊢ 𝑋 = dom 𝑅 | |
2 | psdmrn 18631 | . . 3 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
3 | eqtr3 2761 | . . 3 ⊢ ((dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅) → dom 𝑅 = ran 𝑅) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
5 | 1, 4 | eqtrid 2787 | 1 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cuni 4912 dom cdm 5689 ran crn 5690 PosetRelcps 18622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ps 18624 |
This theorem is referenced by: cnvtsr 18646 ordtbas2 23215 ordtcnv 23225 ordtrest2 23228 |
Copyright terms: Public domain | W3C validator |