MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrn Structured version   Visualization version   GIF version

Theorem psrn 18541
Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
psref.1 𝑋 = dom 𝑅
Assertion
Ref Expression
psrn (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)

Proof of Theorem psrn
StepHypRef Expression
1 psref.1 . 2 𝑋 = dom 𝑅
2 psdmrn 18539 . . 3 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
3 eqtr3 2752 . . 3 ((dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅) → dom 𝑅 = ran 𝑅)
42, 3syl 17 . 2 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
51, 4eqtrid 2777 1 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4874  dom cdm 5641  ran crn 5642  PosetRelcps 18530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ps 18532
This theorem is referenced by:  cnvtsr  18554  ordtbas2  23085  ordtcnv  23095  ordtrest2  23098
  Copyright terms: Public domain W3C validator