Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrn | Structured version Visualization version GIF version |
Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
psref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psrn | ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psref.1 | . 2 ⊢ 𝑋 = dom 𝑅 | |
2 | psdmrn 18079 | . . 3 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
3 | eqtr3 2763 | . . 3 ⊢ ((dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅) → dom 𝑅 = ran 𝑅) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
5 | 1, 4 | syl5eq 2790 | 1 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∪ cuni 4819 dom cdm 5551 ran crn 5552 PosetRelcps 18070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ps 18072 |
This theorem is referenced by: cnvtsr 18094 ordtbas2 22088 ordtcnv 22098 ordtrest2 22101 |
Copyright terms: Public domain | W3C validator |