| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrn | Structured version Visualization version GIF version | ||
| Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| psref.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| psrn | ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psref.1 | . 2 ⊢ 𝑋 = dom 𝑅 | |
| 2 | psdmrn 18474 | . . 3 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
| 3 | eqtr3 2753 | . . 3 ⊢ ((dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅) → dom 𝑅 = ran 𝑅) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
| 5 | 1, 4 | eqtrid 2778 | 1 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cuni 4854 dom cdm 5611 ran crn 5612 PosetRelcps 18465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ps 18467 |
| This theorem is referenced by: cnvtsr 18489 ordtbas2 23101 ordtcnv 23111 ordtrest2 23114 |
| Copyright terms: Public domain | W3C validator |