![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrn | Structured version Visualization version GIF version |
Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
psref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
psrn | ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psref.1 | . 2 ⊢ 𝑋 = dom 𝑅 | |
2 | psdmrn 18533 | . . 3 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | |
3 | eqtr3 2757 | . . 3 ⊢ ((dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅) → dom 𝑅 = ran 𝑅) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
5 | 1, 4 | eqtrid 2783 | 1 ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∪ cuni 4908 dom cdm 5676 ran crn 5677 PosetRelcps 18524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ps 18526 |
This theorem is referenced by: cnvtsr 18548 ordtbas2 22928 ordtcnv 22938 ordtrest2 22941 |
Copyright terms: Public domain | W3C validator |