| Step | Hyp | Ref
| Expression |
| 1 | | relopabv 5805 |
. . . . . 6
⊢ Rel
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝐶 ∈ Cat → Rel
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 3 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑓 = 〈𝑥, 𝑦〉 → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘〈𝑥, 𝑦〉)) |
| 4 | 3 | neeq1d 2992 |
. . . . . . . 8
⊢ (𝑓 = 〈𝑥, 𝑦〉 → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)) |
| 5 | 4 | rabxp 5707 |
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} |
| 6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 7 | 6 | releqd 5762 |
. . . . 5
⊢ (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)})) |
| 8 | 2, 7 | mpbird 257 |
. . . 4
⊢ (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 9 | | isofn 17793 |
. . . . . 6
⊢ (𝐶 ∈ Cat →
(Iso‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
| 10 | | fvex 6894 |
. . . . . . 7
⊢
(Base‘𝐶)
∈ V |
| 11 | | sqxpexg 7754 |
. . . . . . 7
⊢
((Base‘𝐶)
∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
| 12 | 10, 11 | mp1i 13 |
. . . . . 6
⊢ (𝐶 ∈ Cat →
((Base‘𝐶) ×
(Base‘𝐶)) ∈
V) |
| 13 | | 0ex 5282 |
. . . . . . 7
⊢ ∅
∈ V |
| 14 | 13 | a1i 11 |
. . . . . 6
⊢ (𝐶 ∈ Cat → ∅
∈ V) |
| 15 | | suppvalfn 8172 |
. . . . . 6
⊢
(((Iso‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶)) ∧
((Base‘𝐶) ×
(Base‘𝐶)) ∈ V
∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 16 | 9, 12, 14, 15 | syl3anc 1373 |
. . . . 5
⊢ (𝐶 ∈ Cat →
((Iso‘𝐶) supp
∅) = {𝑓 ∈
((Base‘𝐶) ×
(Base‘𝐶)) ∣
((Iso‘𝐶)‘𝑓) ≠
∅}) |
| 17 | 16 | releqd 5762 |
. . . 4
⊢ (𝐶 ∈ Cat → (Rel
((Iso‘𝐶) supp
∅) ↔ Rel {𝑓
∈ ((Base‘𝐶)
× (Base‘𝐶))
∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})) |
| 18 | 8, 17 | mpbird 257 |
. . 3
⊢ (𝐶 ∈ Cat → Rel
((Iso‘𝐶) supp
∅)) |
| 19 | | cicfval 17815 |
. . . 4
⊢ (𝐶 ∈ Cat → (
≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
| 20 | 19 | releqd 5762 |
. . 3
⊢ (𝐶 ∈ Cat → (Rel (
≃𝑐 ‘𝐶) ↔ Rel ((Iso‘𝐶) supp ∅))) |
| 21 | 18, 20 | mpbird 257 |
. 2
⊢ (𝐶 ∈ Cat → Rel (
≃𝑐 ‘𝐶)) |
| 22 | | cicsym 17822 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐
‘𝐶)𝑦) → 𝑦( ≃𝑐 ‘𝐶)𝑥) |
| 23 | | cictr 17823 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐
‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧) → 𝑥( ≃𝑐 ‘𝐶)𝑧) |
| 24 | 23 | 3expb 1120 |
. 2
⊢ ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐
‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧)) → 𝑥( ≃𝑐 ‘𝐶)𝑧) |
| 25 | | cicref 17819 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐 ‘𝐶)𝑥) |
| 26 | | ciclcl 17820 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐
‘𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶)) |
| 27 | 25, 26 | impbida 800 |
. 2
⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐 ‘𝐶)𝑥)) |
| 28 | 21, 22, 24, 27 | iserd 8750 |
1
⊢ (𝐶 ∈ Cat → (
≃𝑐 ‘𝐶) Er (Base‘𝐶)) |