MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicer Structured version   Visualization version   GIF version

Theorem cicer 17792
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicer (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))

Proof of Theorem cicer
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5823 . . . . . 6 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
21a1i 11 . . . . 5 (𝐶 ∈ Cat → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
3 fveq2 6896 . . . . . . . . 9 (𝑓 = ⟨𝑥, 𝑦⟩ → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩))
43neeq1d 2989 . . . . . . . 8 (𝑓 = ⟨𝑥, 𝑦⟩ → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅))
54rabxp 5726 . . . . . . 7 {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
65a1i 11 . . . . . 6 (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
76releqd 5780 . . . . 5 (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}))
82, 7mpbird 256 . . . 4 (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
9 isofn 17761 . . . . . 6 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fvex 6909 . . . . . . 7 (Base‘𝐶) ∈ V
11 sqxpexg 7758 . . . . . . 7 ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
1210, 11mp1i 13 . . . . . 6 (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
13 0ex 5308 . . . . . . 7 ∅ ∈ V
1413a1i 11 . . . . . 6 (𝐶 ∈ Cat → ∅ ∈ V)
15 suppvalfn 8173 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
169, 12, 14, 15syl3anc 1368 . . . . 5 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
1716releqd 5780 . . . 4 (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}))
188, 17mpbird 256 . . 3 (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅))
19 cicfval 17783 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
2019releqd 5780 . . 3 (𝐶 ∈ Cat → (Rel ( ≃𝑐𝐶) ↔ Rel ((Iso‘𝐶) supp ∅)))
2118, 20mpbird 256 . 2 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
22 cicsym 17790 . 2 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦) → 𝑦( ≃𝑐𝐶)𝑥)
23 cictr 17791 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧) → 𝑥( ≃𝑐𝐶)𝑧)
24233expb 1117 . 2 ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧)) → 𝑥( ≃𝑐𝐶)𝑧)
25 cicref 17787 . . 3 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐𝐶)𝑥)
26 ciclcl 17788 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶))
2725, 26impbida 799 . 2 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐𝐶)𝑥))
2821, 22, 24, 27iserd 8751 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wne 2929  {crab 3418  Vcvv 3461  c0 4322  cop 4636   class class class wbr 5149  {copab 5211   × cxp 5676  Rel wrel 5683   Fn wfn 6544  cfv 6549  (class class class)co 7419   supp csupp 8165   Er wer 8722  Basecbs 17183  Catccat 17647  Isociso 17732  𝑐 ccic 17781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-supp 8166  df-er 8725  df-cat 17651  df-cid 17652  df-sect 17733  df-inv 17734  df-iso 17735  df-cic 17782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator