MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicer Structured version   Visualization version   GIF version

Theorem cicer 17867
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicer (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))

Proof of Theorem cicer
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5845 . . . . . 6 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
21a1i 11 . . . . 5 (𝐶 ∈ Cat → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
3 fveq2 6920 . . . . . . . . 9 (𝑓 = ⟨𝑥, 𝑦⟩ → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩))
43neeq1d 3006 . . . . . . . 8 (𝑓 = ⟨𝑥, 𝑦⟩ → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅))
54rabxp 5748 . . . . . . 7 {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
65a1i 11 . . . . . 6 (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
76releqd 5802 . . . . 5 (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}))
82, 7mpbird 257 . . . 4 (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
9 isofn 17836 . . . . . 6 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fvex 6933 . . . . . . 7 (Base‘𝐶) ∈ V
11 sqxpexg 7790 . . . . . . 7 ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
1210, 11mp1i 13 . . . . . 6 (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
13 0ex 5325 . . . . . . 7 ∅ ∈ V
1413a1i 11 . . . . . 6 (𝐶 ∈ Cat → ∅ ∈ V)
15 suppvalfn 8209 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
169, 12, 14, 15syl3anc 1371 . . . . 5 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
1716releqd 5802 . . . 4 (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}))
188, 17mpbird 257 . . 3 (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅))
19 cicfval 17858 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
2019releqd 5802 . . 3 (𝐶 ∈ Cat → (Rel ( ≃𝑐𝐶) ↔ Rel ((Iso‘𝐶) supp ∅)))
2118, 20mpbird 257 . 2 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
22 cicsym 17865 . 2 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦) → 𝑦( ≃𝑐𝐶)𝑥)
23 cictr 17866 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧) → 𝑥( ≃𝑐𝐶)𝑧)
24233expb 1120 . 2 ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧)) → 𝑥( ≃𝑐𝐶)𝑧)
25 cicref 17862 . . 3 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐𝐶)𝑥)
26 ciclcl 17863 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶))
2725, 26impbida 800 . 2 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐𝐶)𝑥))
2821, 22, 24, 27iserd 8789 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  c0 4352  cop 4654   class class class wbr 5166  {copab 5228   × cxp 5698  Rel wrel 5705   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201   Er wer 8760  Basecbs 17258  Catccat 17722  Isociso 17807  𝑐 ccic 17856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-supp 8202  df-er 8763  df-cat 17726  df-cid 17727  df-sect 17808  df-inv 17809  df-iso 17810  df-cic 17857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator