|   | Mathbox for Stefan O'Rear | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fgraphxp | Structured version Visualization version GIF version | ||
| Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| fgraphxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fgraphopab 43215 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | |
| 2 | vex 3484 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 3 | vex 3484 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 4 | 2, 3 | op1std 8024 | . . . . . 6 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (1st ‘𝑥) = 𝑎) | 
| 5 | 4 | fveq2d 6910 | . . . . 5 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝐹‘(1st ‘𝑥)) = (𝐹‘𝑎)) | 
| 6 | 2, 3 | op2ndd 8025 | . . . . 5 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (2nd ‘𝑥) = 𝑏) | 
| 7 | 5, 6 | eqeq12d 2753 | . . . 4 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥) ↔ (𝐹‘𝑎) = 𝑏)) | 
| 8 | 7 | rabxp 5733 | . . 3 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} | 
| 9 | df-3an 1089 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)) | |
| 10 | 9 | opabbii 5210 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} | 
| 11 | 8, 10 | eqtri 2765 | . 2 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} | 
| 12 | 1, 11 | eqtr4di 2795 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {crab 3436 〈cop 4632 {copab 5205 × cxp 5683 ⟶wf 6557 ‘cfv 6561 1st c1st 8012 2nd c2nd 8013 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-1st 8014 df-2nd 8015 | 
| This theorem is referenced by: hausgraph 43217 | 
| Copyright terms: Public domain | W3C validator |