![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fgraphxp | Structured version Visualization version GIF version |
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
fgraphxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fgraphopab 41942 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | |
2 | vex 3478 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
3 | vex 3478 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
4 | 2, 3 | op1std 7984 | . . . . . 6 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑥) = 𝑎) |
5 | 4 | fveq2d 6895 | . . . . 5 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → (𝐹‘(1st ‘𝑥)) = (𝐹‘𝑎)) |
6 | 2, 3 | op2ndd 7985 | . . . . 5 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑥) = 𝑏) |
7 | 5, 6 | eqeq12d 2748 | . . . 4 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥) ↔ (𝐹‘𝑎) = 𝑏)) |
8 | 7 | rabxp 5724 | . . 3 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} |
9 | df-3an 1089 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)) | |
10 | 9 | opabbii 5215 | . . 3 ⊢ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
11 | 8, 10 | eqtri 2760 | . 2 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
12 | 1, 11 | eqtr4di 2790 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {crab 3432 ⟨cop 4634 {copab 5210 × cxp 5674 ⟶wf 6539 ‘cfv 6543 1st c1st 7972 2nd c2nd 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: hausgraph 41944 |
Copyright terms: Public domain | W3C validator |