![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fgraphxp | Structured version Visualization version GIF version |
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
fgraphxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fgraphopab 43164 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | |
2 | vex 3492 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
3 | vex 3492 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
4 | 2, 3 | op1std 8040 | . . . . . 6 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (1st ‘𝑥) = 𝑎) |
5 | 4 | fveq2d 6924 | . . . . 5 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝐹‘(1st ‘𝑥)) = (𝐹‘𝑎)) |
6 | 2, 3 | op2ndd 8041 | . . . . 5 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (2nd ‘𝑥) = 𝑏) |
7 | 5, 6 | eqeq12d 2756 | . . . 4 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥) ↔ (𝐹‘𝑎) = 𝑏)) |
8 | 7 | rabxp 5748 | . . 3 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} |
9 | df-3an 1089 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)) | |
10 | 9 | opabbii 5233 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
11 | 8, 10 | eqtri 2768 | . 2 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
12 | 1, 11 | eqtr4di 2798 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 〈cop 4654 {copab 5228 × cxp 5698 ⟶wf 6569 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: hausgraph 43166 |
Copyright terms: Public domain | W3C validator |