Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphxp Structured version   Visualization version   GIF version

Theorem fgraphxp 43216
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphxp (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fgraphxp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fgraphopab 43215 . 2 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
2 vex 3438 . . . . . . 7 𝑎 ∈ V
3 vex 3438 . . . . . . 7 𝑏 ∈ V
42, 3op1std 7926 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
54fveq2d 6821 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝐹‘(1st𝑥)) = (𝐹𝑎))
62, 3op2ndd 7927 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
75, 6eqeq12d 2746 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝐹‘(1st𝑥)) = (2nd𝑥) ↔ (𝐹𝑎) = 𝑏))
87rabxp 5662 . . 3 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)}
9 df-3an 1088 . . . 4 ((𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
109opabbii 5156 . . 3 {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
118, 10eqtri 2753 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
121, 11eqtr4di 2783 1 (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  {crab 3393  cop 4580  {copab 5151   × cxp 5612  wf 6473  cfv 6477  1st c1st 7914  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-1st 7916  df-2nd 7917
This theorem is referenced by:  hausgraph  43217
  Copyright terms: Public domain W3C validator