Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphxp Structured version   Visualization version   GIF version

Theorem fgraphxp 42526
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphxp (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fgraphxp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fgraphopab 42525 . 2 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
2 vex 3472 . . . . . . 7 𝑎 ∈ V
3 vex 3472 . . . . . . 7 𝑏 ∈ V
42, 3op1std 7984 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
54fveq2d 6889 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝐹‘(1st𝑥)) = (𝐹𝑎))
62, 3op2ndd 7985 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
75, 6eqeq12d 2742 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝐹‘(1st𝑥)) = (2nd𝑥) ↔ (𝐹𝑎) = 𝑏))
87rabxp 5717 . . 3 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)}
9 df-3an 1086 . . . 4 ((𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
109opabbii 5208 . . 3 {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
118, 10eqtri 2754 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
121, 11eqtr4di 2784 1 (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  {crab 3426  cop 4629  {copab 5203   × cxp 5667  wf 6533  cfv 6537  1st c1st 7972  2nd c2nd 7973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fv 6545  df-1st 7974  df-2nd 7975
This theorem is referenced by:  hausgraph  42527
  Copyright terms: Public domain W3C validator