| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fgraphxp | Structured version Visualization version GIF version | ||
| Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| fgraphxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fgraphopab 43176 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | |
| 2 | vex 3442 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 3 | vex 3442 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 4 | 2, 3 | op1std 7941 | . . . . . 6 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (1st ‘𝑥) = 𝑎) |
| 5 | 4 | fveq2d 6830 | . . . . 5 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝐹‘(1st ‘𝑥)) = (𝐹‘𝑎)) |
| 6 | 2, 3 | op2ndd 7942 | . . . . 5 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → (2nd ‘𝑥) = 𝑏) |
| 7 | 5, 6 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥) ↔ (𝐹‘𝑎) = 𝑏)) |
| 8 | 7 | rabxp 5671 | . . 3 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} |
| 9 | df-3an 1088 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)) | |
| 10 | 9 | opabbii 5162 | . . 3 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
| 11 | 8, 10 | eqtri 2752 | . 2 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
| 12 | 1, 11 | eqtr4di 2782 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3396 〈cop 4585 {copab 5157 × cxp 5621 ⟶wf 6482 ‘cfv 6486 1st c1st 7929 2nd c2nd 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-1st 7931 df-2nd 7932 |
| This theorem is referenced by: hausgraph 43178 |
| Copyright terms: Public domain | W3C validator |