![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fgraphxp | Structured version Visualization version GIF version |
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
fgraphxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fgraphopab 42525 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | |
2 | vex 3472 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
3 | vex 3472 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
4 | 2, 3 | op1std 7984 | . . . . . 6 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → (1st ‘𝑥) = 𝑎) |
5 | 4 | fveq2d 6889 | . . . . 5 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → (𝐹‘(1st ‘𝑥)) = (𝐹‘𝑎)) |
6 | 2, 3 | op2ndd 7985 | . . . . 5 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd ‘𝑥) = 𝑏) |
7 | 5, 6 | eqeq12d 2742 | . . . 4 ⊢ (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥) ↔ (𝐹‘𝑎) = 𝑏)) |
8 | 7 | rabxp 5717 | . . 3 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} |
9 | df-3an 1086 | . . . 4 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)) | |
10 | 9 | opabbii 5208 | . . 3 ⊢ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ (𝐹‘𝑎) = 𝑏)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
11 | 8, 10 | eqtri 2754 | . 2 ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)} |
12 | 1, 11 | eqtr4di 2784 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3426 ⟨cop 4629 {copab 5203 × cxp 5667 ⟶wf 6533 ‘cfv 6537 1st c1st 7972 2nd c2nd 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: hausgraph 42527 |
Copyright terms: Public domain | W3C validator |