Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphxp Structured version   Visualization version   GIF version

Theorem fgraphxp 43193
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphxp (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fgraphxp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fgraphopab 43192 . 2 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
2 vex 3482 . . . . . . 7 𝑎 ∈ V
3 vex 3482 . . . . . . 7 𝑏 ∈ V
42, 3op1std 8023 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
54fveq2d 6911 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝐹‘(1st𝑥)) = (𝐹𝑎))
62, 3op2ndd 8024 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
75, 6eqeq12d 2751 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝐹‘(1st𝑥)) = (2nd𝑥) ↔ (𝐹𝑎) = 𝑏))
87rabxp 5737 . . 3 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)}
9 df-3an 1088 . . . 4 ((𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
109opabbii 5215 . . 3 {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
118, 10eqtri 2763 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
121, 11eqtr4di 2793 1 (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  cop 4637  {copab 5210   × cxp 5687  wf 6559  cfv 6563  1st c1st 8011  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1st 8013  df-2nd 8014
This theorem is referenced by:  hausgraph  43194
  Copyright terms: Public domain W3C validator