Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphxp Structured version   Visualization version   GIF version

Theorem fgraphxp 43165
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphxp (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fgraphxp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fgraphopab 43164 . 2 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
2 vex 3492 . . . . . . 7 𝑎 ∈ V
3 vex 3492 . . . . . . 7 𝑏 ∈ V
42, 3op1std 8040 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
54fveq2d 6924 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝐹‘(1st𝑥)) = (𝐹𝑎))
62, 3op2ndd 8041 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
75, 6eqeq12d 2756 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝐹‘(1st𝑥)) = (2nd𝑥) ↔ (𝐹𝑎) = 𝑏))
87rabxp 5748 . . 3 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)}
9 df-3an 1089 . . . 4 ((𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
109opabbii 5233 . . 3 {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
118, 10eqtri 2768 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
121, 11eqtr4di 2798 1 (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  cop 4654  {copab 5228   × cxp 5698  wf 6569  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  hausgraph  43166
  Copyright terms: Public domain W3C validator