Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphxp Structured version   Visualization version   GIF version

Theorem fgraphxp 43193
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphxp (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fgraphxp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fgraphopab 43192 . 2 (𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
2 vex 3451 . . . . . . 7 𝑎 ∈ V
3 vex 3451 . . . . . . 7 𝑏 ∈ V
42, 3op1std 7978 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
54fveq2d 6862 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝐹‘(1st𝑥)) = (𝐹𝑎))
62, 3op2ndd 7979 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
75, 6eqeq12d 2745 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝐹‘(1st𝑥)) = (2nd𝑥) ↔ (𝐹𝑎) = 𝑏))
87rabxp 5686 . . 3 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)}
9 df-3an 1088 . . . 4 ((𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏))
109opabbii 5174 . . 3 {⟨𝑎, 𝑏⟩ ∣ (𝑎𝐴𝑏𝐵 ∧ (𝐹𝑎) = 𝑏)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
118, 10eqtri 2752 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)}
121, 11eqtr4di 2782 1 (𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  cop 4595  {copab 5169   × cxp 5636  wf 6507  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  hausgraph  43194
  Copyright terms: Public domain W3C validator