![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fpwfvss | Structured version Visualization version GIF version |
Description: Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.) |
Ref | Expression |
---|---|
fpwfvss.f | β’ πΉ:πΆβΆπ« π΅ |
Ref | Expression |
---|---|
fpwfvss | β’ (πΉβπ΄) β π΅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpwfvss.f | . . . 4 β’ πΉ:πΆβΆπ« π΅ | |
2 | 1 | ffvelcdmi 7085 | . . 3 β’ (π΄ β πΆ β (πΉβπ΄) β π« π΅) |
3 | 2 | elpwid 4611 | . 2 β’ (π΄ β πΆ β (πΉβπ΄) β π΅) |
4 | 1 | fdmi 6729 | . . . . 5 β’ dom πΉ = πΆ |
5 | 4 | eleq2i 2825 | . . . 4 β’ (π΄ β dom πΉ β π΄ β πΆ) |
6 | ndmfv 6926 | . . . 4 β’ (Β¬ π΄ β dom πΉ β (πΉβπ΄) = β ) | |
7 | 5, 6 | sylnbir 330 | . . 3 β’ (Β¬ π΄ β πΆ β (πΉβπ΄) = β ) |
8 | 0ss 4396 | . . 3 β’ β β π΅ | |
9 | 7, 8 | eqsstrdi 4036 | . 2 β’ (Β¬ π΄ β πΆ β (πΉβπ΄) β π΅) |
10 | 3, 9 | pm2.61i 182 | 1 β’ (πΉβπ΄) β π΅ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1541 β wcel 2106 β wss 3948 β c0 4322 π« cpw 4602 dom cdm 5676 βΆwf 6539 βcfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |