Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwfvss Structured version   Visualization version   GIF version

Theorem fpwfvss 43374
Description: Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.)
Hypothesis
Ref Expression
fpwfvss.f 𝐹:𝐶⟶𝒫 𝐵
Assertion
Ref Expression
fpwfvss (𝐹𝐴) ⊆ 𝐵

Proof of Theorem fpwfvss
StepHypRef Expression
1 fpwfvss.f . . . 4 𝐹:𝐶⟶𝒫 𝐵
21ffvelcdmi 7117 . . 3 (𝐴𝐶 → (𝐹𝐴) ∈ 𝒫 𝐵)
32elpwid 4631 . 2 (𝐴𝐶 → (𝐹𝐴) ⊆ 𝐵)
41fdmi 6758 . . . . 5 dom 𝐹 = 𝐶
54eleq2i 2836 . . . 4 (𝐴 ∈ dom 𝐹𝐴𝐶)
6 ndmfv 6955 . . . 4 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
75, 6sylnbir 331 . . 3 𝐴𝐶 → (𝐹𝐴) = ∅)
8 0ss 4423 . . 3 ∅ ⊆ 𝐵
97, 8eqsstrdi 4063 . 2 𝐴𝐶 → (𝐹𝐴) ⊆ 𝐵)
103, 9pm2.61i 182 1 (𝐹𝐴) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  wss 3976  c0 4352  𝒫 cpw 4622  dom cdm 5700  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator