Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwfvss Structured version   Visualization version   GIF version

Theorem fpwfvss 43444
Description: Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.)
Hypothesis
Ref Expression
fpwfvss.f 𝐹:𝐶⟶𝒫 𝐵
Assertion
Ref Expression
fpwfvss (𝐹𝐴) ⊆ 𝐵

Proof of Theorem fpwfvss
StepHypRef Expression
1 fpwfvss.f . . . 4 𝐹:𝐶⟶𝒫 𝐵
21ffvelcdmi 7016 . . 3 (𝐴𝐶 → (𝐹𝐴) ∈ 𝒫 𝐵)
32elpwid 4559 . 2 (𝐴𝐶 → (𝐹𝐴) ⊆ 𝐵)
41fdmi 6662 . . . . 5 dom 𝐹 = 𝐶
54eleq2i 2823 . . . 4 (𝐴 ∈ dom 𝐹𝐴𝐶)
6 ndmfv 6854 . . . 4 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
75, 6sylnbir 331 . . 3 𝐴𝐶 → (𝐹𝐴) = ∅)
8 0ss 4350 . . 3 ∅ ⊆ 𝐵
97, 8eqsstrdi 3979 . 2 𝐴𝐶 → (𝐹𝐴) ⊆ 𝐵)
103, 9pm2.61i 182 1 (𝐹𝐴) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  wss 3902  c0 4283  𝒫 cpw 4550  dom cdm 5616  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator