| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fpwfvss | Structured version Visualization version GIF version | ||
| Description: Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fpwfvss.f | ⊢ 𝐹:𝐶⟶𝒫 𝐵 |
| Ref | Expression |
|---|---|
| fpwfvss | ⊢ (𝐹‘𝐴) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwfvss.f | . . . 4 ⊢ 𝐹:𝐶⟶𝒫 𝐵 | |
| 2 | 1 | ffvelcdmi 7055 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐹‘𝐴) ∈ 𝒫 𝐵) |
| 3 | 2 | elpwid 4572 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐹‘𝐴) ⊆ 𝐵) |
| 4 | 1 | fdmi 6699 | . . . . 5 ⊢ dom 𝐹 = 𝐶 |
| 5 | 4 | eleq2i 2820 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝐶) |
| 6 | ndmfv 6893 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 7 | 5, 6 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐶 → (𝐹‘𝐴) = ∅) |
| 8 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
| 9 | 7, 8 | eqsstrdi 3991 | . 2 ⊢ (¬ 𝐴 ∈ 𝐶 → (𝐹‘𝐴) ⊆ 𝐵) |
| 10 | 3, 9 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐴) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |