| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fpwfvss | Structured version Visualization version GIF version | ||
| Description: Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fpwfvss.f | ⊢ 𝐹:𝐶⟶𝒫 𝐵 |
| Ref | Expression |
|---|---|
| fpwfvss | ⊢ (𝐹‘𝐴) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwfvss.f | . . . 4 ⊢ 𝐹:𝐶⟶𝒫 𝐵 | |
| 2 | 1 | ffvelcdmi 7022 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐹‘𝐴) ∈ 𝒫 𝐵) |
| 3 | 2 | elpwid 4558 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐹‘𝐴) ⊆ 𝐵) |
| 4 | 1 | fdmi 6667 | . . . . 5 ⊢ dom 𝐹 = 𝐶 |
| 5 | 4 | eleq2i 2825 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝐶) |
| 6 | ndmfv 6860 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 7 | 5, 6 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐶 → (𝐹‘𝐴) = ∅) |
| 8 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
| 9 | 7, 8 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐴 ∈ 𝐶 → (𝐹‘𝐴) ⊆ 𝐵) |
| 10 | 3, 9 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐴) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |