Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwfvss Structured version   Visualization version   GIF version

Theorem fpwfvss 43403
Description: Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.)
Hypothesis
Ref Expression
fpwfvss.f 𝐹:𝐶⟶𝒫 𝐵
Assertion
Ref Expression
fpwfvss (𝐹𝐴) ⊆ 𝐵

Proof of Theorem fpwfvss
StepHypRef Expression
1 fpwfvss.f . . . 4 𝐹:𝐶⟶𝒫 𝐵
21ffvelcdmi 7078 . . 3 (𝐴𝐶 → (𝐹𝐴) ∈ 𝒫 𝐵)
32elpwid 4589 . 2 (𝐴𝐶 → (𝐹𝐴) ⊆ 𝐵)
41fdmi 6722 . . . . 5 dom 𝐹 = 𝐶
54eleq2i 2827 . . . 4 (𝐴 ∈ dom 𝐹𝐴𝐶)
6 ndmfv 6916 . . . 4 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
75, 6sylnbir 331 . . 3 𝐴𝐶 → (𝐹𝐴) = ∅)
8 0ss 4380 . . 3 ∅ ⊆ 𝐵
97, 8eqsstrdi 4008 . 2 𝐴𝐶 → (𝐹𝐴) ⊆ 𝐵)
103, 9pm2.61i 182 1 (𝐹𝐴) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wss 3931  c0 4313  𝒫 cpw 4580  dom cdm 5659  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator