Step | Hyp | Ref
| Expression |
1 | | tsmssubm.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
2 | | tsmssubm.h |
. . . . . . 7
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
3 | 2 | submbas 18368 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻)) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 = (Base‘𝐻)) |
5 | 4 | eleq2d 2824 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (Base‘𝐻))) |
6 | 5 | anbi1d 629 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣))) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣))))) |
7 | | elin 3899 |
. . . . 5
⊢ (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥 ∈ 𝑆)) |
8 | 7 | biancomi 462 |
. . . 4
⊢ (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝐺 tsums 𝐹))) |
9 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
10 | 9 | submss 18363 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
11 | 1, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
12 | 11 | sselda 3917 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
15 | | tsmssubm.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ CMnd) |
16 | | tsmssubm.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ TopSp) |
17 | | tsmssubm.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
18 | | tsmssubm.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
19 | 18, 11 | fssd 6602 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐺)) |
20 | 9, 13, 14, 15, 16, 17, 19 | eltsms 23192 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) |
21 | 20 | baibd 539 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
22 | 12, 21 | syldan 590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
23 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑢 ∈ V |
24 | 23 | inex1 5236 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝑆) ∈ V |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑢 ∩ 𝑆) ∈ V) |
26 | 2, 13 | resstopn 22245 |
. . . . . . . . 9
⊢
((TopOpen‘𝐺)
↾t 𝑆) =
(TopOpen‘𝐻) |
27 | 26 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ 𝑣 ∈ (TopOpen‘𝐻)) |
28 | | fvex 6769 |
. . . . . . . . . 10
⊢
(TopOpen‘𝐺)
∈ V |
29 | | elrest 17055 |
. . . . . . . . . 10
⊢
(((TopOpen‘𝐺)
∈ V ∧ 𝑆 ∈
(SubMnd‘𝐺)) →
(𝑣 ∈
((TopOpen‘𝐺)
↾t 𝑆)
↔ ∃𝑢 ∈
(TopOpen‘𝐺)𝑣 = (𝑢 ∩ 𝑆))) |
30 | 28, 1, 29 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢 ∩ 𝑆))) |
31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢 ∩ 𝑆))) |
32 | 27, 31 | bitr3id 284 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑣 ∈ (TopOpen‘𝐻) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢 ∩ 𝑆))) |
33 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑣 = (𝑢 ∩ 𝑆) → (𝑥 ∈ 𝑣 ↔ 𝑥 ∈ (𝑢 ∩ 𝑆))) |
34 | | elin 3899 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑢 ∩ 𝑆) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑆)) |
35 | 34 | rbaib 538 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑆 → (𝑥 ∈ (𝑢 ∩ 𝑆) ↔ 𝑥 ∈ 𝑢)) |
36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (𝑢 ∩ 𝑆) ↔ 𝑥 ∈ 𝑢)) |
37 | 33, 36 | sylan9bbr 510 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑣 = (𝑢 ∩ 𝑆)) → (𝑥 ∈ 𝑣 ↔ 𝑥 ∈ 𝑢)) |
38 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑢 ∩ 𝑆) → ((𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣 ↔ (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ (𝑢 ∩ 𝑆))) |
39 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐻) =
(Base‘𝐻) |
40 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝐻) = (0g‘𝐻) |
41 | 2 | submmnd 18367 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd) |
42 | 1, 41 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐻 ∈ Mnd) |
43 | 2 | subcmn 19353 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
44 | 15, 42, 43 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 ∈ CMnd) |
45 | 44 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd) |
46 | | elinel2 4126 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin) |
47 | 46 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin) |
48 | 18 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴⟶𝑆) |
49 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin)) |
50 | 49 | simplbi 497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ⊆ 𝐴) |
52 | 48, 51 | fssresd 6625 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑦):𝑦⟶𝑆) |
53 | 4 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 = (Base‘𝐻)) |
54 | 53 | feq3d 6571 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ↾ 𝑦):𝑦⟶𝑆 ↔ (𝐹 ↾ 𝑦):𝑦⟶(Base‘𝐻))) |
55 | 52, 54 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑦):𝑦⟶(Base‘𝐻)) |
56 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0g‘𝐻) ∈ V |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) →
(0g‘𝐻)
∈ V) |
58 | 52, 47, 57 | fdmfifsupp 9068 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑦) finSupp (0g‘𝐻)) |
59 | 39, 40, 45, 47, 55, 58 | gsumcl 19431 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ (Base‘𝐻)) |
60 | 59, 53 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑆) |
61 | | elin 3899 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 Σg
(𝐹 ↾ 𝑦)) ∈ (𝑢 ∩ 𝑆) ↔ ((𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢 ∧ (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑆)) |
62 | 61 | rbaib 538 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 Σg
(𝐹 ↾ 𝑦)) ∈ 𝑆 → ((𝐻 Σg (𝐹 ↾ 𝑦)) ∈ (𝑢 ∩ 𝑆) ↔ (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
63 | 60, 62 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹 ↾ 𝑦)) ∈ (𝑢 ∩ 𝑆) ↔ (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
64 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 ∈ (SubMnd‘𝐺)) |
65 | 47, 64, 52, 2 | gsumsubm 18388 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ 𝑦)) = (𝐻 Σg (𝐹 ↾ 𝑦))) |
66 | 65 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢 ↔ (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
67 | 63, 66 | bitr4d 281 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹 ↾ 𝑦)) ∈ (𝑢 ∩ 𝑆) ↔ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
68 | 38, 67 | sylan9bbr 510 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑣 = (𝑢 ∩ 𝑆)) → ((𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
69 | 68 | an32s 648 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑣 = (𝑢 ∩ 𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)) |
70 | 69 | imbi2d 340 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑣 = (𝑢 ∩ 𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣) ↔ (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) |
71 | 70 | ralbidva 3119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑣 = (𝑢 ∩ 𝑆)) → (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) |
72 | 71 | rexbidv 3225 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑣 = (𝑢 ∩ 𝑆)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))) |
73 | 37, 72 | imbi12d 344 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑣 = (𝑢 ∩ 𝑆)) → ((𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣)) ↔ (𝑥 ∈ 𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
74 | 25, 32, 73 | ralxfr2d 5328 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∀𝑣 ∈ (TopOpen‘𝐻)(𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢)))) |
75 | 22, 74 | bitr4d 281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣)))) |
76 | 75 | pm5.32da 578 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) ↔ (𝑥 ∈ 𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣))))) |
77 | 8, 76 | syl5bb 282 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣))))) |
78 | | eqid 2738 |
. . . 4
⊢
(TopOpen‘𝐻) =
(TopOpen‘𝐻) |
79 | | resstps 22246 |
. . . . . 6
⊢ ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺 ↾s 𝑆) ∈ TopSp) |
80 | 16, 1, 79 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ TopSp) |
81 | 2, 80 | eqeltrid 2843 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ TopSp) |
82 | 4 | feq3d 6571 |
. . . . 5
⊢ (𝜑 → (𝐹:𝐴⟶𝑆 ↔ 𝐹:𝐴⟶(Base‘𝐻))) |
83 | 18, 82 | mpbid 231 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐻)) |
84 | 39, 78, 14, 44, 81, 17, 83 | eltsms 23192 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥 ∈ 𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐻 Σg (𝐹 ↾ 𝑦)) ∈ 𝑣))))) |
85 | 6, 77, 84 | 3bitr4rd 311 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ 𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆))) |
86 | 85 | eqrdv 2736 |
1
⊢ (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆)) |