MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssubm Structured version   Visualization version   GIF version

Theorem tsmssubm 24152
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmssubm.a (𝜑𝐴𝑉)
tsmssubm.1 (𝜑𝐺 ∈ CMnd)
tsmssubm.2 (𝜑𝐺 ∈ TopSp)
tsmssubm.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
tsmssubm.f (𝜑𝐹:𝐴𝑆)
tsmssubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
tsmssubm (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))

Proof of Theorem tsmssubm
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssubm.s . . . . . 6 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 tsmssubm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
32submbas 18828 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
41, 3syl 17 . . . . 5 (𝜑𝑆 = (Base‘𝐻))
54eleq2d 2826 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
65anbi1d 631 . . 3 (𝜑 → ((𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
7 elin 3966 . . . . 5 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆))
87biancomi 462 . . . 4 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
9 eqid 2736 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
109submss 18823 . . . . . . . . 9 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
111, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (Base‘𝐺))
1211sselda 3982 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
13 eqid 2736 . . . . . . . . 9 (TopOpen‘𝐺) = (TopOpen‘𝐺)
14 eqid 2736 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
15 tsmssubm.1 . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
16 tsmssubm.2 . . . . . . . . 9 (𝜑𝐺 ∈ TopSp)
17 tsmssubm.a . . . . . . . . 9 (𝜑𝐴𝑉)
18 tsmssubm.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝑆)
1918, 11fssd 6752 . . . . . . . . 9 (𝜑𝐹:𝐴⟶(Base‘𝐺))
209, 13, 14, 15, 16, 17, 19eltsms 24142 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
2120baibd 539 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
2212, 21syldan 591 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
23 vex 3483 . . . . . . . . 9 𝑢 ∈ V
2423inex1 5316 . . . . . . . 8 (𝑢𝑆) ∈ V
2524a1i 11 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑢𝑆) ∈ V)
262, 13resstopn 23195 . . . . . . . . 9 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
2726eleq2i 2832 . . . . . . . 8 (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ 𝑣 ∈ (TopOpen‘𝐻))
28 fvex 6918 . . . . . . . . . 10 (TopOpen‘𝐺) ∈ V
29 elrest 17473 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ V ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3028, 1, 29sylancr 587 . . . . . . . . 9 (𝜑 → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3130adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3227, 31bitr3id 285 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑣 ∈ (TopOpen‘𝐻) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
33 eleq2 2829 . . . . . . . . 9 (𝑣 = (𝑢𝑆) → (𝑥𝑣𝑥 ∈ (𝑢𝑆)))
34 elin 3966 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑆) ↔ (𝑥𝑢𝑥𝑆))
3534rbaib 538 . . . . . . . . . 10 (𝑥𝑆 → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3635adantl 481 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3733, 36sylan9bbr 510 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (𝑥𝑣𝑥𝑢))
38 eleq2 2829 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑆) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆)))
39 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
40 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g𝐻) = (0g𝐻)
412submmnd 18827 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
421, 41syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Mnd)
432subcmn 19856 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
4415, 42, 43syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 ∈ CMnd)
4544ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
46 elinel2 4201 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
4746adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
4818ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝑆)
49 elfpw 9395 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
5049simplbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
5150adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
5248, 51fssresd 6774 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦𝑆)
534ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 = (Base‘𝐻))
5453feq3d 6722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦):𝑦𝑆 ↔ (𝐹𝑦):𝑦⟶(Base‘𝐻)))
5552, 54mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦⟶(Base‘𝐻))
56 fvex 6918 . . . . . . . . . . . . . . . . . . 19 (0g𝐻) ∈ V
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐻) ∈ V)
5852, 47, 57fdmfifsupp 9416 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) finSupp (0g𝐻))
5939, 40, 45, 47, 55, 58gsumcl 19934 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ (Base‘𝐻))
6059, 53eleqtrrd 2843 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ 𝑆)
61 elin 3966 . . . . . . . . . . . . . . . 16 ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ ((𝐻 Σg (𝐹𝑦)) ∈ 𝑢 ∧ (𝐻 Σg (𝐹𝑦)) ∈ 𝑆))
6261rbaib 538 . . . . . . . . . . . . . . 15 ((𝐻 Σg (𝐹𝑦)) ∈ 𝑆 → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6360, 62syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
641ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 ∈ (SubMnd‘𝐺))
6547, 64, 52, 2gsumsubm 18849 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
6665eleq1d 2825 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6763, 66bitr4d 282 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
6838, 67sylan9bbr 510 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑣 = (𝑢𝑆)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
6968an32s 652 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7069imbi2d 340 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7170ralbidva 3175 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7271rexbidv 3178 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7337, 72imbi12d 344 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → ((𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ (𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7425, 32, 73ralxfr2d 5409 . . . . . 6 ((𝜑𝑥𝑆) → (∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7522, 74bitr4d 282 . . . . 5 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))))
7675pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
778, 76bitrid 283 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
78 eqid 2736 . . . 4 (TopOpen‘𝐻) = (TopOpen‘𝐻)
79 resstps 23196 . . . . . 6 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
8016, 1, 79syl2anc 584 . . . . 5 (𝜑 → (𝐺s 𝑆) ∈ TopSp)
812, 80eqeltrid 2844 . . . 4 (𝜑𝐻 ∈ TopSp)
824feq3d 6722 . . . . 5 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
8318, 82mpbid 232 . . . 4 (𝜑𝐹:𝐴⟶(Base‘𝐻))
8439, 78, 14, 44, 81, 17, 83eltsms 24142 . . 3 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
856, 77, 843bitr4rd 312 . 2 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ 𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆)))
8685eqrdv 2734 1 (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  cin 3949  wss 3950  𝒫 cpw 4599  cres 5686  wf 6556  cfv 6560  (class class class)co 7432  Fincfn 8986  Basecbs 17248  s cress 17275  t crest 17466  TopOpenctopn 17467  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748  SubMndcsubmnd 18796  CMndccmn 19799  TopSpctps 22939   tsums ctsu 24135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-tset 17317  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-cntz 19336  df-cmn 19801  df-fbas 21362  df-fg 21363  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-ntr 23029  df-nei 23107  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-tsms 24136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator