MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssubm Structured version   Visualization version   GIF version

Theorem tsmssubm 23202
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmssubm.a (𝜑𝐴𝑉)
tsmssubm.1 (𝜑𝐺 ∈ CMnd)
tsmssubm.2 (𝜑𝐺 ∈ TopSp)
tsmssubm.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
tsmssubm.f (𝜑𝐹:𝐴𝑆)
tsmssubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
tsmssubm (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))

Proof of Theorem tsmssubm
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssubm.s . . . . . 6 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 tsmssubm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
32submbas 18368 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
41, 3syl 17 . . . . 5 (𝜑𝑆 = (Base‘𝐻))
54eleq2d 2824 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
65anbi1d 629 . . 3 (𝜑 → ((𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
7 elin 3899 . . . . 5 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆))
87biancomi 462 . . . 4 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
9 eqid 2738 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
109submss 18363 . . . . . . . . 9 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
111, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (Base‘𝐺))
1211sselda 3917 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
13 eqid 2738 . . . . . . . . 9 (TopOpen‘𝐺) = (TopOpen‘𝐺)
14 eqid 2738 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
15 tsmssubm.1 . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
16 tsmssubm.2 . . . . . . . . 9 (𝜑𝐺 ∈ TopSp)
17 tsmssubm.a . . . . . . . . 9 (𝜑𝐴𝑉)
18 tsmssubm.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝑆)
1918, 11fssd 6602 . . . . . . . . 9 (𝜑𝐹:𝐴⟶(Base‘𝐺))
209, 13, 14, 15, 16, 17, 19eltsms 23192 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
2120baibd 539 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
2212, 21syldan 590 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
23 vex 3426 . . . . . . . . 9 𝑢 ∈ V
2423inex1 5236 . . . . . . . 8 (𝑢𝑆) ∈ V
2524a1i 11 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑢𝑆) ∈ V)
262, 13resstopn 22245 . . . . . . . . 9 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
2726eleq2i 2830 . . . . . . . 8 (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ 𝑣 ∈ (TopOpen‘𝐻))
28 fvex 6769 . . . . . . . . . 10 (TopOpen‘𝐺) ∈ V
29 elrest 17055 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ V ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3028, 1, 29sylancr 586 . . . . . . . . 9 (𝜑 → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3130adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3227, 31bitr3id 284 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑣 ∈ (TopOpen‘𝐻) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
33 eleq2 2827 . . . . . . . . 9 (𝑣 = (𝑢𝑆) → (𝑥𝑣𝑥 ∈ (𝑢𝑆)))
34 elin 3899 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑆) ↔ (𝑥𝑢𝑥𝑆))
3534rbaib 538 . . . . . . . . . 10 (𝑥𝑆 → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3635adantl 481 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3733, 36sylan9bbr 510 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (𝑥𝑣𝑥𝑢))
38 eleq2 2827 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑆) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆)))
39 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
40 eqid 2738 . . . . . . . . . . . . . . . . 17 (0g𝐻) = (0g𝐻)
412submmnd 18367 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
421, 41syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Mnd)
432subcmn 19353 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
4415, 42, 43syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 ∈ CMnd)
4544ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
46 elinel2 4126 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
4746adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
4818ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝑆)
49 elfpw 9051 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
5049simplbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
5150adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
5248, 51fssresd 6625 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦𝑆)
534ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 = (Base‘𝐻))
5453feq3d 6571 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦):𝑦𝑆 ↔ (𝐹𝑦):𝑦⟶(Base‘𝐻)))
5552, 54mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦⟶(Base‘𝐻))
56 fvex 6769 . . . . . . . . . . . . . . . . . . 19 (0g𝐻) ∈ V
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐻) ∈ V)
5852, 47, 57fdmfifsupp 9068 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) finSupp (0g𝐻))
5939, 40, 45, 47, 55, 58gsumcl 19431 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ (Base‘𝐻))
6059, 53eleqtrrd 2842 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ 𝑆)
61 elin 3899 . . . . . . . . . . . . . . . 16 ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ ((𝐻 Σg (𝐹𝑦)) ∈ 𝑢 ∧ (𝐻 Σg (𝐹𝑦)) ∈ 𝑆))
6261rbaib 538 . . . . . . . . . . . . . . 15 ((𝐻 Σg (𝐹𝑦)) ∈ 𝑆 → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6360, 62syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
641ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 ∈ (SubMnd‘𝐺))
6547, 64, 52, 2gsumsubm 18388 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
6665eleq1d 2823 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6763, 66bitr4d 281 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
6838, 67sylan9bbr 510 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑣 = (𝑢𝑆)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
6968an32s 648 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7069imbi2d 340 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7170ralbidva 3119 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7271rexbidv 3225 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7337, 72imbi12d 344 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → ((𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ (𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7425, 32, 73ralxfr2d 5328 . . . . . 6 ((𝜑𝑥𝑆) → (∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7522, 74bitr4d 281 . . . . 5 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))))
7675pm5.32da 578 . . . 4 (𝜑 → ((𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
778, 76syl5bb 282 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
78 eqid 2738 . . . 4 (TopOpen‘𝐻) = (TopOpen‘𝐻)
79 resstps 22246 . . . . . 6 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
8016, 1, 79syl2anc 583 . . . . 5 (𝜑 → (𝐺s 𝑆) ∈ TopSp)
812, 80eqeltrid 2843 . . . 4 (𝜑𝐻 ∈ TopSp)
824feq3d 6571 . . . . 5 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
8318, 82mpbid 231 . . . 4 (𝜑𝐹:𝐴⟶(Base‘𝐻))
8439, 78, 14, 44, 81, 17, 83eltsms 23192 . . 3 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
856, 77, 843bitr4rd 311 . 2 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ 𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆)))
8685eqrdv 2736 1 (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  s cress 16867  t crest 17048  TopOpenctopn 17049  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  SubMndcsubmnd 18344  CMndccmn 19301  TopSpctps 21989   tsums ctsu 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator