MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralima Structured version   Visualization version   GIF version

Theorem ralima 7274
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.)
Hypothesis
Ref Expression
ralima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralima ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem ralima
StepHypRef Expression
1 fnfun 6679 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
21funfnd 6609 . 2 (𝐹 Fn 𝐴𝐹 Fn dom 𝐹)
3 fndm 6682 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43sseq2d 4041 . . 3 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
54biimpar 477 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
6 fvexd 6935 . . 3 (((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
7 fvelimab 6994 . . . 4 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
8 eqcom 2747 . . . . 5 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
98rexbii 3100 . . . 4 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
107, 9bitrdi 287 . . 3 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
11 ralima.x . . . 4 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1211adantl 481 . . 3 (((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
136, 10, 12ralxfr2d 5428 . 2 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
142, 5, 13syl2an2r 684 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976  dom cdm 5700  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  rexima  7275  supisolem  9542  ordtypelem6  9592  ordtypelem7  9593  limsupgle  15523  mrcuni  17679  ipodrsima  18611  mgmhmima  18753  mhmimalem  18859  ghmnsgima  19280  cntzmhm  19381  rhmimasubrnglem  20591  qtopeu  23745  kqdisj  23761  ghmcnp  24144  qustgplem  24150  qtopbaslem  24800  bndth  25009  fmcfil  25325  ovoliunlem1  25556  volsup2  25659  mbflimsup  25720  itg2gt0  25815  mdegleb  26123  efopn  26718  fsumdvdsmul  27256  fsumdvdsmulOLD  27258  negsunif  28105  negsbdaylem  28106  imaelshi  32090  cvmopnlem  35246  weiunfrlem  36430  ovoliunnfl  37622  voliunnfl  37624  volsupnfl  37625  gicabl  43056
  Copyright terms: Public domain W3C validator