| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralima | Structured version Visualization version GIF version | ||
| Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| ralima.x | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6637 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | funfnd 6566 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
| 3 | fndm 6640 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | sseq2d 3991 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 5 | 4 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
| 6 | fvexd 6890 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ V) | |
| 7 | fvelimab 6950 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
| 8 | eqcom 2742 | . . . . 5 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 9 | 8 | rexbii 3083 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
| 10 | 7, 9 | bitrdi 287 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
| 11 | ralima.x | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 13 | 6, 10, 12 | ralxfr2d 5380 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| 14 | 2, 5, 13 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 dom cdm 5654 “ cima 5657 Fn wfn 6525 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 |
| This theorem is referenced by: rexima 7229 supisolem 9484 ordtypelem6 9535 ordtypelem7 9536 limsupgle 15491 mrcuni 17631 ipodrsima 18549 mgmhmima 18691 mhmimalem 18800 ghmnsgima 19221 cntzmhm 19322 rhmimasubrnglem 20523 qtopeu 23652 kqdisj 23668 ghmcnp 24051 qustgplem 24057 qtopbaslem 24695 bndth 24906 fmcfil 25222 ovoliunlem1 25453 volsup2 25556 mbflimsup 25617 itg2gt0 25711 mdegleb 26019 efopn 26617 fsumdvdsmul 27155 fsumdvdsmulOLD 27157 negsunif 28004 negsbdaylem 28005 imaelshi 31985 cvmopnlem 35246 weiunfrlem 36428 ovoliunnfl 37632 voliunnfl 37634 volsupnfl 37635 gicabl 43070 |
| Copyright terms: Public domain | W3C validator |