| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralima | Structured version Visualization version GIF version | ||
| Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| ralima.x | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6618 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | funfnd 6547 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
| 3 | fndm 6621 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | sseq2d 3979 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 5 | 4 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
| 6 | fvexd 6873 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ V) | |
| 7 | fvelimab 6933 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
| 8 | eqcom 2736 | . . . . 5 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 9 | 8 | rexbii 3076 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
| 10 | 7, 9 | bitrdi 287 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
| 11 | ralima.x | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 13 | 6, 10, 12 | ralxfr2d 5365 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| 14 | 2, 5, 13 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 dom cdm 5638 “ cima 5641 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: rexima 7212 supisolem 9425 ordtypelem6 9476 ordtypelem7 9477 limsupgle 15443 mrcuni 17582 ipodrsima 18500 mgmhmima 18642 mhmimalem 18751 ghmnsgima 19172 cntzmhm 19273 rhmimasubrnglem 20474 qtopeu 23603 kqdisj 23619 ghmcnp 24002 qustgplem 24008 qtopbaslem 24646 bndth 24857 fmcfil 25172 ovoliunlem1 25403 volsup2 25506 mbflimsup 25567 itg2gt0 25661 mdegleb 25969 efopn 26567 fsumdvdsmul 27105 fsumdvdsmulOLD 27107 negsunif 27961 negsbdaylem 27962 onsiso 28169 bdayn0p1 28258 imaelshi 31987 vonf1owev 35095 cvmopnlem 35265 weiunfrlem 36452 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 gicabl 43088 permac8prim 45004 |
| Copyright terms: Public domain | W3C validator |