MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralima Structured version   Visualization version   GIF version

Theorem ralima 7177
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.)
Hypothesis
Ref Expression
ralima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralima ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem ralima
StepHypRef Expression
1 fnfun 6586 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
21funfnd 6517 . 2 (𝐹 Fn 𝐴𝐹 Fn dom 𝐹)
3 fndm 6589 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43sseq2d 3970 . . 3 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
54biimpar 477 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
6 fvexd 6841 . . 3 (((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
7 fvelimab 6899 . . . 4 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
8 eqcom 2736 . . . . 5 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
98rexbii 3076 . . . 4 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
107, 9bitrdi 287 . . 3 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
11 ralima.x . . . 4 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1211adantl 481 . . 3 (((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
136, 10, 12ralxfr2d 5352 . 2 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
142, 5, 13syl2an2r 685 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905  dom cdm 5623  cima 5626   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  rexima  7178  supisolem  9383  ordtypelem6  9434  ordtypelem7  9435  limsupgle  15403  mrcuni  17546  ipodrsima  18466  mgmhmima  18608  mhmimalem  18717  ghmnsgima  19138  cntzmhm  19239  rhmimasubrnglem  20469  qtopeu  23620  kqdisj  23636  ghmcnp  24019  qustgplem  24025  qtopbaslem  24663  bndth  24874  fmcfil  25189  ovoliunlem1  25420  volsup2  25523  mbflimsup  25584  itg2gt0  25678  mdegleb  25986  efopn  26584  fsumdvdsmul  27122  fsumdvdsmulOLD  27124  negsunif  27985  negsbdaylem  27986  onsiso  28193  bdayn0p1  28282  imaelshi  32021  vonf1owev  35100  cvmopnlem  35270  weiunfrlem  36457  ovoliunnfl  37661  voliunnfl  37663  volsupnfl  37664  gicabl  43092  permac8prim  45008
  Copyright terms: Public domain W3C validator