MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralima Structured version   Visualization version   GIF version

Theorem ralima 7228
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.)
Hypothesis
Ref Expression
ralima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralima ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem ralima
StepHypRef Expression
1 fnfun 6637 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
21funfnd 6566 . 2 (𝐹 Fn 𝐴𝐹 Fn dom 𝐹)
3 fndm 6640 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43sseq2d 3991 . . 3 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
54biimpar 477 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
6 fvexd 6890 . . 3 (((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
7 fvelimab 6950 . . . 4 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
8 eqcom 2742 . . . . 5 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
98rexbii 3083 . . . 4 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
107, 9bitrdi 287 . . 3 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
11 ralima.x . . . 4 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1211adantl 481 . . 3 (((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
136, 10, 12ralxfr2d 5380 . 2 ((𝐹 Fn dom 𝐹𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
142, 5, 13syl2an2r 685 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926  dom cdm 5654  cima 5657   Fn wfn 6525  cfv 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538
This theorem is referenced by:  rexima  7229  supisolem  9484  ordtypelem6  9535  ordtypelem7  9536  limsupgle  15491  mrcuni  17631  ipodrsima  18549  mgmhmima  18691  mhmimalem  18800  ghmnsgima  19221  cntzmhm  19322  rhmimasubrnglem  20523  qtopeu  23652  kqdisj  23668  ghmcnp  24051  qustgplem  24057  qtopbaslem  24695  bndth  24906  fmcfil  25222  ovoliunlem1  25453  volsup2  25556  mbflimsup  25617  itg2gt0  25711  mdegleb  26019  efopn  26617  fsumdvdsmul  27155  fsumdvdsmulOLD  27157  negsunif  28004  negsbdaylem  28005  imaelshi  31985  cvmopnlem  35246  weiunfrlem  36428  ovoliunnfl  37632  voliunnfl  37634  volsupnfl  37635  gicabl  43070
  Copyright terms: Public domain W3C validator