| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralima | Structured version Visualization version GIF version | ||
| Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| ralima.x | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6600 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | funfnd 6531 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
| 3 | fndm 6603 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | sseq2d 3976 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 5 | 4 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
| 6 | fvexd 6855 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ V) | |
| 7 | fvelimab 6915 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
| 8 | eqcom 2736 | . . . . 5 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 9 | 8 | rexbii 3076 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
| 10 | 7, 9 | bitrdi 287 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
| 11 | ralima.x | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 13 | 6, 10, 12 | ralxfr2d 5360 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| 14 | 2, 5, 13 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 dom cdm 5631 “ cima 5634 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: rexima 7194 supisolem 9401 ordtypelem6 9452 ordtypelem7 9453 limsupgle 15419 mrcuni 17558 ipodrsima 18476 mgmhmima 18618 mhmimalem 18727 ghmnsgima 19148 cntzmhm 19249 rhmimasubrnglem 20450 qtopeu 23579 kqdisj 23595 ghmcnp 23978 qustgplem 23984 qtopbaslem 24622 bndth 24833 fmcfil 25148 ovoliunlem1 25379 volsup2 25482 mbflimsup 25543 itg2gt0 25637 mdegleb 25945 efopn 26543 fsumdvdsmul 27081 fsumdvdsmulOLD 27083 negsunif 27937 negsbdaylem 27938 onsiso 28145 bdayn0p1 28234 imaelshi 31960 vonf1owev 35068 cvmopnlem 35238 weiunfrlem 36425 ovoliunnfl 37629 voliunnfl 37631 volsupnfl 37632 gicabl 43061 permac8prim 44977 |
| Copyright terms: Public domain | W3C validator |