MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralima Structured version   Visualization version   GIF version

Theorem ralima 7193
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralima ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ralima
StepHypRef Expression
1 fvexd 6862 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
2 fvelimab 6919 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
3 eqcom 2744 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
43rexbii 3098 . . 3 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
52, 4bitrdi 287 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
6 rexima.x . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
76adantl 483 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
81, 5, 7ralxfr2d 5370 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  wrex 3074  Vcvv 3448  wss 3915  cima 5641   Fn wfn 6496  cfv 6501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-fv 6509
This theorem is referenced by:  supisolem  9416  ordtypelem6  9466  ordtypelem7  9467  limsupgle  15366  mrcuni  17508  ipodrsima  18437  mhmima  18642  ghmnsgima  19039  cntzmhm  19126  qtopeu  23083  kqdisj  23099  ghmcnp  23482  qustgplem  23488  qtopbaslem  24138  bndth  24337  fmcfil  24652  ovoliunlem1  24882  volsup2  24985  mbflimsup  25046  itg2gt0  25141  mdegleb  25445  efopn  26029  fsumdvdsmul  26560  imaelshi  31042  cvmopnlem  33912  ovoliunnfl  36149  voliunnfl  36151  volsupnfl  36152  gicabl  41455  mgmhmima  46170
  Copyright terms: Public domain W3C validator