![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralima | Structured version Visualization version GIF version |
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.) |
Ref | Expression |
---|---|
ralima.x | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6679 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | funfnd 6609 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
3 | fndm 6682 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | sseq2d 4041 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
5 | 4 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
6 | fvexd 6935 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ V) | |
7 | fvelimab 6994 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
8 | eqcom 2747 | . . . . 5 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
9 | 8 | rexbii 3100 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
10 | 7, 9 | bitrdi 287 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
11 | ralima.x | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
12 | 11 | adantl 481 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
13 | 6, 10, 12 | ralxfr2d 5428 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
14 | 2, 5, 13 | syl2an2r 684 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 dom cdm 5700 “ cima 5703 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: rexima 7275 supisolem 9542 ordtypelem6 9592 ordtypelem7 9593 limsupgle 15523 mrcuni 17679 ipodrsima 18611 mgmhmima 18753 mhmimalem 18859 ghmnsgima 19280 cntzmhm 19381 rhmimasubrnglem 20591 qtopeu 23745 kqdisj 23761 ghmcnp 24144 qustgplem 24150 qtopbaslem 24800 bndth 25009 fmcfil 25325 ovoliunlem1 25556 volsup2 25659 mbflimsup 25720 itg2gt0 25815 mdegleb 26123 efopn 26718 fsumdvdsmul 27256 fsumdvdsmulOLD 27258 negsunif 28105 negsbdaylem 28106 imaelshi 32090 cvmopnlem 35246 weiunfrlem 36430 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 gicabl 43056 |
Copyright terms: Public domain | W3C validator |