| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralima | Structured version Visualization version GIF version | ||
| Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) Reduce DV conditions. (Revised by Matthew House, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| ralima.x | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6621 | . . 3 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | funfnd 6550 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
| 3 | fndm 6624 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | sseq2d 3982 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 5 | 4 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
| 6 | fvexd 6876 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ V) | |
| 7 | fvelimab 6936 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
| 8 | eqcom 2737 | . . . . 5 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 9 | 8 | rexbii 3077 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦)) |
| 10 | 7, 9 | bitrdi 287 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 = (𝐹‘𝑦))) |
| 11 | ralima.x | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 13 | 6, 10, 12 | ralxfr2d 5368 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| 14 | 2, 5, 13 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 dom cdm 5641 “ cima 5644 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: rexima 7215 supisolem 9432 ordtypelem6 9483 ordtypelem7 9484 limsupgle 15450 mrcuni 17589 ipodrsima 18507 mgmhmima 18649 mhmimalem 18758 ghmnsgima 19179 cntzmhm 19280 rhmimasubrnglem 20481 qtopeu 23610 kqdisj 23626 ghmcnp 24009 qustgplem 24015 qtopbaslem 24653 bndth 24864 fmcfil 25179 ovoliunlem1 25410 volsup2 25513 mbflimsup 25574 itg2gt0 25668 mdegleb 25976 efopn 26574 fsumdvdsmul 27112 fsumdvdsmulOLD 27114 negsunif 27968 negsbdaylem 27969 onsiso 28176 bdayn0p1 28265 imaelshi 31994 vonf1owev 35102 cvmopnlem 35272 weiunfrlem 36459 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 gicabl 43095 permac8prim 45011 |
| Copyright terms: Public domain | W3C validator |