![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version |
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6935 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
2 | fvelrnb 6982 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
3 | eqcom 2747 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
4 | 3 | rexbii 3100 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
8 | 1, 5, 7 | ralxfr2d 5428 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ran crn 5701 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: ralrnmptw 7128 ralrnmpt 7130 cbvfo 7325 isoselem 7377 indexfi 9430 ordtypelem9 9595 ordtypelem10 9596 wemapwe 9766 numacn 10118 acndom 10120 rpnnen1lem3 13044 fsequb2 14027 limsuple 15524 limsupval2 15526 climsup 15718 ruclem11 16288 ruclem12 16289 prmreclem6 16968 imasaddfnlem 17588 imasvscafn 17597 cycsubgcl 19246 ghmrn 19269 ghmnsgima 19280 pgpssslw 19656 gexex 19895 dprdfcntz 20059 znf1o 21593 frlmlbs 21840 lindfrn 21864 ptcnplem 23650 kqt0lem 23765 isr0 23766 regr1lem2 23769 uzrest 23926 tmdgsum2 24125 imasf1oxmet 24406 imasf1omet 24407 bndth 25009 evth 25010 ovolficcss 25523 ovollb2lem 25542 ovolunlem1 25551 ovoliunlem1 25556 ovoliunlem2 25557 ovoliun2 25560 ovolscalem1 25567 ovolicc1 25570 voliunlem2 25605 voliunlem3 25606 ioombl1lem4 25615 uniioovol 25633 uniioombllem2 25637 uniioombllem3 25639 uniioombllem6 25642 volsup2 25659 vitalilem3 25664 mbfsup 25718 mbfinf 25719 mbflimsup 25720 itg1ge0 25740 itg1mulc 25759 itg1climres 25769 mbfi1fseqlem4 25773 itg2seq 25797 itg2monolem1 25805 itg2mono 25808 itg2i1fseq2 25811 itg2gt0 25815 itg2cnlem1 25816 itg2cn 25818 limciun 25949 plycpn 26349 hmopidmchi 32183 hmopidmpji 32184 rge0scvg 33895 mclsax 35537 mblfinlem2 37618 ismtyhmeolem 37764 nacsfix 42668 fnwe2lem2 43008 gneispace 44096 climinf 45527 liminfval2 45689 |
Copyright terms: Public domain | W3C validator |