| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
| Ref | Expression |
|---|---|
| rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6837 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
| 2 | fvelrnb 6883 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
| 3 | eqcom 2736 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 4 | 3 | rexbii 3076 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
| 5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
| 6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 8 | 1, 5, 7 | ralxfr2d 5349 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ran crn 5620 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: ralrnmptw 7028 ralrnmpt 7030 cbvfo 7226 isoselem 7278 indexfi 9250 ordtypelem9 9418 ordtypelem10 9419 wemapwe 9593 numacn 9943 acndom 9945 rpnnen1lem3 12880 fsequb2 13883 limsuple 15385 limsupval2 15387 climsup 15577 ruclem11 16149 ruclem12 16150 prmreclem6 16833 imasaddfnlem 17432 imasvscafn 17441 cycsubgcl 19085 ghmrn 19108 ghmnsgima 19119 pgpssslw 19493 gexex 19732 dprdfcntz 19896 znf1o 21458 frlmlbs 21704 lindfrn 21728 ptcnplem 23506 kqt0lem 23621 isr0 23622 regr1lem2 23625 uzrest 23782 tmdgsum2 23981 imasf1oxmet 24261 imasf1omet 24262 bndth 24855 evth 24856 ovolficcss 25368 ovollb2lem 25387 ovolunlem1 25396 ovoliunlem1 25401 ovoliunlem2 25402 ovoliun2 25405 ovolscalem1 25412 ovolicc1 25415 voliunlem2 25450 voliunlem3 25451 ioombl1lem4 25460 uniioovol 25478 uniioombllem2 25482 uniioombllem3 25484 uniioombllem6 25487 volsup2 25504 vitalilem3 25509 mbfsup 25563 mbfinf 25564 mbflimsup 25565 itg1ge0 25585 itg1mulc 25603 itg1climres 25613 mbfi1fseqlem4 25617 itg2seq 25641 itg2monolem1 25649 itg2mono 25652 itg2i1fseq2 25655 itg2gt0 25659 itg2cnlem1 25660 itg2cn 25662 limciun 25793 plycpn 26195 hmopidmchi 32095 hmopidmpji 32096 rge0scvg 33922 mclsax 35552 mblfinlem2 37648 ismtyhmeolem 37794 nacsfix 42695 fnwe2lem2 43034 gneispace 44117 climinf 45597 liminfval2 45759 |
| Copyright terms: Public domain | W3C validator |