Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version |
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6771 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
2 | fvelrnb 6812 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
3 | eqcom 2745 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
4 | 3 | rexbii 3177 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
5 | 2, 4 | bitrdi 286 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
8 | 1, 5, 7 | ralxfr2d 5328 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ran crn 5581 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: ralrnmptw 6952 ralrnmpt 6954 cbvfo 7141 isoselem 7192 indexfi 9057 ordtypelem9 9215 ordtypelem10 9216 wemapwe 9385 numacn 9736 acndom 9738 rpnnen1lem3 12648 fsequb2 13624 limsuple 15115 limsupval2 15117 climsup 15309 ruclem11 15877 ruclem12 15878 prmreclem6 16550 imasaddfnlem 17156 imasvscafn 17165 cycsubgcl 18740 ghmrn 18762 ghmnsgima 18773 pgpssslw 19134 gexex 19369 dprdfcntz 19533 znf1o 20671 frlmlbs 20914 lindfrn 20938 ptcnplem 22680 kqt0lem 22795 isr0 22796 regr1lem2 22799 uzrest 22956 tmdgsum2 23155 imasf1oxmet 23436 imasf1omet 23437 bndth 24027 evth 24028 ovolficcss 24538 ovollb2lem 24557 ovolunlem1 24566 ovoliunlem1 24571 ovoliunlem2 24572 ovoliun2 24575 ovolscalem1 24582 ovolicc1 24585 voliunlem2 24620 voliunlem3 24621 ioombl1lem4 24630 uniioovol 24648 uniioombllem2 24652 uniioombllem3 24654 uniioombllem6 24657 volsup2 24674 vitalilem3 24679 mbfsup 24733 mbfinf 24734 mbflimsup 24735 itg1ge0 24755 itg1mulc 24774 itg1climres 24784 mbfi1fseqlem4 24788 itg2seq 24812 itg2monolem1 24820 itg2mono 24823 itg2i1fseq2 24826 itg2gt0 24830 itg2cnlem1 24831 itg2cn 24833 limciun 24963 plycpn 25354 hmopidmchi 30414 hmopidmpji 30415 rge0scvg 31801 mclsax 33431 mblfinlem2 35742 ismtyhmeolem 35889 nacsfix 40450 fnwe2lem2 40792 gneispace 41633 climinf 43037 liminfval2 43199 |
Copyright terms: Public domain | W3C validator |