| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
| Ref | Expression |
|---|---|
| rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6837 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
| 2 | fvelrnb 6882 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
| 3 | eqcom 2738 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 4 | 3 | rexbii 3079 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
| 5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
| 6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 8 | 1, 5, 7 | ralxfr2d 5346 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ran crn 5615 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: ralrnmptw 7027 ralrnmpt 7029 cbvfo 7223 isoselem 7275 indexfi 9244 ordtypelem9 9412 ordtypelem10 9413 wemapwe 9587 numacn 9940 acndom 9942 rpnnen1lem3 12877 fsequb2 13883 limsuple 15385 limsupval2 15387 climsup 15577 ruclem11 16149 ruclem12 16150 prmreclem6 16833 imasaddfnlem 17432 imasvscafn 17441 cycsubgcl 19118 ghmrn 19141 ghmnsgima 19152 pgpssslw 19526 gexex 19765 dprdfcntz 19929 znf1o 21488 frlmlbs 21734 lindfrn 21758 ptcnplem 23536 kqt0lem 23651 isr0 23652 regr1lem2 23655 uzrest 23812 tmdgsum2 24011 imasf1oxmet 24290 imasf1omet 24291 bndth 24884 evth 24885 ovolficcss 25397 ovollb2lem 25416 ovolunlem1 25425 ovoliunlem1 25430 ovoliunlem2 25431 ovoliun2 25434 ovolscalem1 25441 ovolicc1 25444 voliunlem2 25479 voliunlem3 25480 ioombl1lem4 25489 uniioovol 25507 uniioombllem2 25511 uniioombllem3 25513 uniioombllem6 25516 volsup2 25533 vitalilem3 25538 mbfsup 25592 mbfinf 25593 mbflimsup 25594 itg1ge0 25614 itg1mulc 25632 itg1climres 25642 mbfi1fseqlem4 25646 itg2seq 25670 itg2monolem1 25678 itg2mono 25681 itg2i1fseq2 25684 itg2gt0 25688 itg2cnlem1 25689 itg2cn 25691 limciun 25822 plycpn 26224 hmopidmchi 32131 hmopidmpji 32132 rge0scvg 33962 mclsax 35613 mblfinlem2 37697 ismtyhmeolem 37843 nacsfix 42804 fnwe2lem2 43143 gneispace 44226 climinf 45705 liminfval2 45865 |
| Copyright terms: Public domain | W3C validator |