| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
| Ref | Expression |
|---|---|
| rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6896 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
| 2 | fvelrnb 6944 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
| 3 | eqcom 2743 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 4 | 3 | rexbii 3084 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
| 5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
| 6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 8 | 1, 5, 7 | ralxfr2d 5385 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ran crn 5660 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: ralrnmptw 7089 ralrnmpt 7091 cbvfo 7287 isoselem 7339 indexfi 9377 ordtypelem9 9545 ordtypelem10 9546 wemapwe 9716 numacn 10068 acndom 10070 rpnnen1lem3 13000 fsequb2 13999 limsuple 15499 limsupval2 15501 climsup 15691 ruclem11 16263 ruclem12 16264 prmreclem6 16946 imasaddfnlem 17547 imasvscafn 17556 cycsubgcl 19194 ghmrn 19217 ghmnsgima 19228 pgpssslw 19600 gexex 19839 dprdfcntz 20003 znf1o 21517 frlmlbs 21762 lindfrn 21786 ptcnplem 23564 kqt0lem 23679 isr0 23680 regr1lem2 23683 uzrest 23840 tmdgsum2 24039 imasf1oxmet 24319 imasf1omet 24320 bndth 24913 evth 24914 ovolficcss 25427 ovollb2lem 25446 ovolunlem1 25455 ovoliunlem1 25460 ovoliunlem2 25461 ovoliun2 25464 ovolscalem1 25471 ovolicc1 25474 voliunlem2 25509 voliunlem3 25510 ioombl1lem4 25519 uniioovol 25537 uniioombllem2 25541 uniioombllem3 25543 uniioombllem6 25546 volsup2 25563 vitalilem3 25568 mbfsup 25622 mbfinf 25623 mbflimsup 25624 itg1ge0 25644 itg1mulc 25662 itg1climres 25672 mbfi1fseqlem4 25676 itg2seq 25700 itg2monolem1 25708 itg2mono 25711 itg2i1fseq2 25714 itg2gt0 25718 itg2cnlem1 25719 itg2cn 25721 limciun 25852 plycpn 26254 hmopidmchi 32137 hmopidmpji 32138 rge0scvg 33985 mclsax 35596 mblfinlem2 37687 ismtyhmeolem 37833 nacsfix 42702 fnwe2lem2 43042 gneispace 44125 climinf 45602 liminfval2 45764 |
| Copyright terms: Public domain | W3C validator |