Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version |
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6789 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
2 | fvelrnb 6830 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
3 | eqcom 2745 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
4 | 3 | rexbii 3181 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
7 | 6 | adantl 482 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
8 | 1, 5, 7 | ralxfr2d 5333 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ran crn 5590 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: ralrnmptw 6970 ralrnmpt 6972 cbvfo 7161 isoselem 7212 indexfi 9127 ordtypelem9 9285 ordtypelem10 9286 wemapwe 9455 numacn 9805 acndom 9807 rpnnen1lem3 12719 fsequb2 13696 limsuple 15187 limsupval2 15189 climsup 15381 ruclem11 15949 ruclem12 15950 prmreclem6 16622 imasaddfnlem 17239 imasvscafn 17248 cycsubgcl 18825 ghmrn 18847 ghmnsgima 18858 pgpssslw 19219 gexex 19454 dprdfcntz 19618 znf1o 20759 frlmlbs 21004 lindfrn 21028 ptcnplem 22772 kqt0lem 22887 isr0 22888 regr1lem2 22891 uzrest 23048 tmdgsum2 23247 imasf1oxmet 23528 imasf1omet 23529 bndth 24121 evth 24122 ovolficcss 24633 ovollb2lem 24652 ovolunlem1 24661 ovoliunlem1 24666 ovoliunlem2 24667 ovoliun2 24670 ovolscalem1 24677 ovolicc1 24680 voliunlem2 24715 voliunlem3 24716 ioombl1lem4 24725 uniioovol 24743 uniioombllem2 24747 uniioombllem3 24749 uniioombllem6 24752 volsup2 24769 vitalilem3 24774 mbfsup 24828 mbfinf 24829 mbflimsup 24830 itg1ge0 24850 itg1mulc 24869 itg1climres 24879 mbfi1fseqlem4 24883 itg2seq 24907 itg2monolem1 24915 itg2mono 24918 itg2i1fseq2 24921 itg2gt0 24925 itg2cnlem1 24926 itg2cn 24928 limciun 25058 plycpn 25449 hmopidmchi 30513 hmopidmpji 30514 rge0scvg 31899 mclsax 33531 mblfinlem2 35815 ismtyhmeolem 35962 nacsfix 40534 fnwe2lem2 40876 gneispace 41744 climinf 43147 liminfval2 43309 |
Copyright terms: Public domain | W3C validator |