| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
| Ref | Expression |
|---|---|
| rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6855 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
| 2 | fvelrnb 6903 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
| 3 | eqcom 2736 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 4 | 3 | rexbii 3076 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
| 5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
| 6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 8 | 1, 5, 7 | ralxfr2d 5360 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ran crn 5632 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: ralrnmptw 7048 ralrnmpt 7050 cbvfo 7246 isoselem 7298 indexfi 9287 ordtypelem9 9455 ordtypelem10 9456 wemapwe 9626 numacn 9978 acndom 9980 rpnnen1lem3 12914 fsequb2 13917 limsuple 15420 limsupval2 15422 climsup 15612 ruclem11 16184 ruclem12 16185 prmreclem6 16868 imasaddfnlem 17467 imasvscafn 17476 cycsubgcl 19120 ghmrn 19143 ghmnsgima 19154 pgpssslw 19528 gexex 19767 dprdfcntz 19931 znf1o 21493 frlmlbs 21739 lindfrn 21763 ptcnplem 23541 kqt0lem 23656 isr0 23657 regr1lem2 23660 uzrest 23817 tmdgsum2 24016 imasf1oxmet 24296 imasf1omet 24297 bndth 24890 evth 24891 ovolficcss 25403 ovollb2lem 25422 ovolunlem1 25431 ovoliunlem1 25436 ovoliunlem2 25437 ovoliun2 25440 ovolscalem1 25447 ovolicc1 25450 voliunlem2 25485 voliunlem3 25486 ioombl1lem4 25495 uniioovol 25513 uniioombllem2 25517 uniioombllem3 25519 uniioombllem6 25522 volsup2 25539 vitalilem3 25544 mbfsup 25598 mbfinf 25599 mbflimsup 25600 itg1ge0 25620 itg1mulc 25638 itg1climres 25648 mbfi1fseqlem4 25652 itg2seq 25676 itg2monolem1 25684 itg2mono 25687 itg2i1fseq2 25690 itg2gt0 25694 itg2cnlem1 25695 itg2cn 25697 limciun 25828 plycpn 26230 hmopidmchi 32130 hmopidmpji 32131 rge0scvg 33932 mclsax 35549 mblfinlem2 37645 ismtyhmeolem 37791 nacsfix 42693 fnwe2lem2 43033 gneispace 44116 climinf 45597 liminfval2 45759 |
| Copyright terms: Public domain | W3C validator |