Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version |
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6673 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
2 | fvelrnb 6714 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
3 | eqcom 2765 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
4 | 3 | rexbii 3175 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
5 | 2, 4 | bitrdi 290 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
7 | 6 | adantl 485 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
8 | 1, 5, 7 | ralxfr2d 5279 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ran crn 5525 Fn wfn 6330 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-fv 6343 |
This theorem is referenced by: ralrnmptw 6851 ralrnmpt 6853 cbvfo 7037 isoselem 7088 indexfi 8865 ordtypelem9 9023 ordtypelem10 9024 wemapwe 9193 numacn 9509 acndom 9511 rpnnen1lem3 12419 fsequb2 13393 limsuple 14883 limsupval2 14885 climsup 15074 ruclem11 15641 ruclem12 15642 prmreclem6 16312 imasaddfnlem 16859 imasvscafn 16868 cycsubgcl 18416 ghmrn 18438 ghmnsgima 18449 pgpssslw 18806 gexex 19041 dprdfcntz 19205 znf1o 20319 frlmlbs 20562 lindfrn 20586 ptcnplem 22321 kqt0lem 22436 isr0 22437 regr1lem2 22440 uzrest 22597 tmdgsum2 22796 imasf1oxmet 23077 imasf1omet 23078 bndth 23659 evth 23660 ovolficcss 24169 ovollb2lem 24188 ovolunlem1 24197 ovoliunlem1 24202 ovoliunlem2 24203 ovoliun2 24206 ovolscalem1 24213 ovolicc1 24216 voliunlem2 24251 voliunlem3 24252 ioombl1lem4 24261 uniioovol 24279 uniioombllem2 24283 uniioombllem3 24285 uniioombllem6 24288 volsup2 24305 vitalilem3 24310 mbfsup 24364 mbfinf 24365 mbflimsup 24366 itg1ge0 24386 itg1mulc 24404 itg1climres 24414 mbfi1fseqlem4 24418 itg2seq 24442 itg2monolem1 24450 itg2mono 24453 itg2i1fseq2 24456 itg2gt0 24460 itg2cnlem1 24461 itg2cn 24463 limciun 24593 plycpn 24984 hmopidmchi 30033 hmopidmpji 30034 rge0scvg 31420 mclsax 33047 mblfinlem2 35397 ismtyhmeolem 35544 nacsfix 40048 fnwe2lem2 40390 gneispace 41232 climinf 42636 liminfval2 42798 |
Copyright terms: Public domain | W3C validator |