![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version |
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6922 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
2 | fvelrnb 6969 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
3 | eqcom 2742 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
4 | 3 | rexbii 3092 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
8 | 1, 5, 7 | ralxfr2d 5416 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ran crn 5690 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: ralrnmptw 7114 ralrnmpt 7116 cbvfo 7309 isoselem 7361 indexfi 9398 ordtypelem9 9564 ordtypelem10 9565 wemapwe 9735 numacn 10087 acndom 10089 rpnnen1lem3 13019 fsequb2 14014 limsuple 15511 limsupval2 15513 climsup 15703 ruclem11 16273 ruclem12 16274 prmreclem6 16955 imasaddfnlem 17575 imasvscafn 17584 cycsubgcl 19237 ghmrn 19260 ghmnsgima 19271 pgpssslw 19647 gexex 19886 dprdfcntz 20050 znf1o 21588 frlmlbs 21835 lindfrn 21859 ptcnplem 23645 kqt0lem 23760 isr0 23761 regr1lem2 23764 uzrest 23921 tmdgsum2 24120 imasf1oxmet 24401 imasf1omet 24402 bndth 25004 evth 25005 ovolficcss 25518 ovollb2lem 25537 ovolunlem1 25546 ovoliunlem1 25551 ovoliunlem2 25552 ovoliun2 25555 ovolscalem1 25562 ovolicc1 25565 voliunlem2 25600 voliunlem3 25601 ioombl1lem4 25610 uniioovol 25628 uniioombllem2 25632 uniioombllem3 25634 uniioombllem6 25637 volsup2 25654 vitalilem3 25659 mbfsup 25713 mbfinf 25714 mbflimsup 25715 itg1ge0 25735 itg1mulc 25754 itg1climres 25764 mbfi1fseqlem4 25768 itg2seq 25792 itg2monolem1 25800 itg2mono 25803 itg2i1fseq2 25806 itg2gt0 25810 itg2cnlem1 25811 itg2cn 25813 limciun 25944 plycpn 26346 hmopidmchi 32180 hmopidmpji 32181 rge0scvg 33910 mclsax 35554 mblfinlem2 37645 ismtyhmeolem 37791 nacsfix 42700 fnwe2lem2 43040 gneispace 44124 climinf 45562 liminfval2 45724 |
Copyright terms: Public domain | W3C validator |