| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
| Ref | Expression |
|---|---|
| rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6876 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
| 2 | fvelrnb 6924 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
| 3 | eqcom 2737 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 4 | 3 | rexbii 3077 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
| 5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
| 6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 8 | 1, 5, 7 | ralxfr2d 5368 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ran crn 5642 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: ralrnmptw 7069 ralrnmpt 7071 cbvfo 7267 isoselem 7319 indexfi 9318 ordtypelem9 9486 ordtypelem10 9487 wemapwe 9657 numacn 10009 acndom 10011 rpnnen1lem3 12945 fsequb2 13948 limsuple 15451 limsupval2 15453 climsup 15643 ruclem11 16215 ruclem12 16216 prmreclem6 16899 imasaddfnlem 17498 imasvscafn 17507 cycsubgcl 19145 ghmrn 19168 ghmnsgima 19179 pgpssslw 19551 gexex 19790 dprdfcntz 19954 znf1o 21468 frlmlbs 21713 lindfrn 21737 ptcnplem 23515 kqt0lem 23630 isr0 23631 regr1lem2 23634 uzrest 23791 tmdgsum2 23990 imasf1oxmet 24270 imasf1omet 24271 bndth 24864 evth 24865 ovolficcss 25377 ovollb2lem 25396 ovolunlem1 25405 ovoliunlem1 25410 ovoliunlem2 25411 ovoliun2 25414 ovolscalem1 25421 ovolicc1 25424 voliunlem2 25459 voliunlem3 25460 ioombl1lem4 25469 uniioovol 25487 uniioombllem2 25491 uniioombllem3 25493 uniioombllem6 25496 volsup2 25513 vitalilem3 25518 mbfsup 25572 mbfinf 25573 mbflimsup 25574 itg1ge0 25594 itg1mulc 25612 itg1climres 25622 mbfi1fseqlem4 25626 itg2seq 25650 itg2monolem1 25658 itg2mono 25661 itg2i1fseq2 25664 itg2gt0 25668 itg2cnlem1 25669 itg2cn 25671 limciun 25802 plycpn 26204 hmopidmchi 32087 hmopidmpji 32088 rge0scvg 33946 mclsax 35563 mblfinlem2 37659 ismtyhmeolem 37805 nacsfix 42707 fnwe2lem2 43047 gneispace 44130 climinf 45611 liminfval2 45773 |
| Copyright terms: Public domain | W3C validator |