![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version |
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6553 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
2 | fvelrnb 6594 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
3 | eqcom 2802 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
4 | 3 | rexbii 3211 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
5 | 2, 4 | syl6bb 288 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
7 | 6 | adantl 482 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
8 | 1, 5, 7 | ralxfr2d 5202 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ∃wrex 3106 Vcvv 3437 ran crn 5444 Fn wfn 6220 ‘cfv 6225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-iota 6189 df-fun 6227 df-fn 6228 df-fv 6233 |
This theorem is referenced by: ralrnmpt 6725 cbvfo 6910 isoselem 6957 indexfi 8678 ordtypelem9 8836 ordtypelem10 8837 wemapwe 9006 numacn 9321 acndom 9323 rpnnen1lem3 12228 fsequb2 13194 limsuple 14669 limsupval2 14671 climsup 14860 ruclem11 15426 ruclem12 15427 prmreclem6 16086 imasaddfnlem 16630 imasvscafn 16639 cycsubgcl 18059 ghmrn 18112 ghmnsgima 18123 pgpssslw 18469 gexex 18696 dprdfcntz 18854 znf1o 20380 frlmlbs 20623 lindfrn 20647 ptcnplem 21913 kqt0lem 22028 isr0 22029 regr1lem2 22032 uzrest 22189 tmdgsum2 22388 imasf1oxmet 22668 imasf1omet 22669 bndth 23245 evth 23246 ovolficcss 23753 ovollb2lem 23772 ovolunlem1 23781 ovoliunlem1 23786 ovoliunlem2 23787 ovoliun2 23790 ovolscalem1 23797 ovolicc1 23800 voliunlem2 23835 voliunlem3 23836 ioombl1lem4 23845 uniioovol 23863 uniioombllem2 23867 uniioombllem3 23869 uniioombllem6 23872 volsup2 23889 vitalilem3 23894 mbfsup 23948 mbfinf 23949 mbflimsup 23950 itg1ge0 23970 itg1mulc 23988 itg1climres 23998 mbfi1fseqlem4 24002 itg2seq 24026 itg2monolem1 24034 itg2mono 24037 itg2i1fseq2 24040 itg2gt0 24044 itg2cnlem1 24045 itg2cn 24047 limciun 24175 plycpn 24561 hmopidmchi 29619 hmopidmpji 29620 rge0scvg 30809 mclsax 32424 mblfinlem2 34461 ismtyhmeolem 34614 nacsfix 38794 fnwe2lem2 39136 gneispace 39969 climinf 41429 liminfval2 41591 |
Copyright terms: Public domain | W3C validator |