| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
| Ref | Expression |
|---|---|
| rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6873 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
| 2 | fvelrnb 6921 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
| 3 | eqcom 2736 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 4 | 3 | rexbii 3076 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
| 5 | 2, 4 | bitrdi 287 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
| 6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
| 8 | 1, 5, 7 | ralxfr2d 5365 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ran crn 5639 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: ralrnmptw 7066 ralrnmpt 7068 cbvfo 7264 isoselem 7316 indexfi 9311 ordtypelem9 9479 ordtypelem10 9480 wemapwe 9650 numacn 10002 acndom 10004 rpnnen1lem3 12938 fsequb2 13941 limsuple 15444 limsupval2 15446 climsup 15636 ruclem11 16208 ruclem12 16209 prmreclem6 16892 imasaddfnlem 17491 imasvscafn 17500 cycsubgcl 19138 ghmrn 19161 ghmnsgima 19172 pgpssslw 19544 gexex 19783 dprdfcntz 19947 znf1o 21461 frlmlbs 21706 lindfrn 21730 ptcnplem 23508 kqt0lem 23623 isr0 23624 regr1lem2 23627 uzrest 23784 tmdgsum2 23983 imasf1oxmet 24263 imasf1omet 24264 bndth 24857 evth 24858 ovolficcss 25370 ovollb2lem 25389 ovolunlem1 25398 ovoliunlem1 25403 ovoliunlem2 25404 ovoliun2 25407 ovolscalem1 25414 ovolicc1 25417 voliunlem2 25452 voliunlem3 25453 ioombl1lem4 25462 uniioovol 25480 uniioombllem2 25484 uniioombllem3 25486 uniioombllem6 25489 volsup2 25506 vitalilem3 25511 mbfsup 25565 mbfinf 25566 mbflimsup 25567 itg1ge0 25587 itg1mulc 25605 itg1climres 25615 mbfi1fseqlem4 25619 itg2seq 25643 itg2monolem1 25651 itg2mono 25654 itg2i1fseq2 25657 itg2gt0 25661 itg2cnlem1 25662 itg2cn 25664 limciun 25795 plycpn 26197 hmopidmchi 32080 hmopidmpji 32081 rge0scvg 33939 mclsax 35556 mblfinlem2 37652 ismtyhmeolem 37798 nacsfix 42700 fnwe2lem2 43040 gneispace 44123 climinf 45604 liminfval2 45766 |
| Copyright terms: Public domain | W3C validator |