![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrn | Structured version Visualization version GIF version |
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrn | ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6907 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) | |
2 | fvelrnb 6953 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
3 | eqcom 2737 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
4 | 3 | rexbii 3092 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
5 | 2, 4 | bitrdi 286 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
6 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
7 | 6 | adantl 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
8 | 1, 5, 7 | ralxfr2d 5409 | 1 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 Vcvv 3472 ran crn 5678 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: ralrnmptw 7096 ralrnmpt 7098 cbvfo 7291 isoselem 7342 indexfi 9364 ordtypelem9 9525 ordtypelem10 9526 wemapwe 9696 numacn 10048 acndom 10050 rpnnen1lem3 12969 fsequb2 13947 limsuple 15428 limsupval2 15430 climsup 15622 ruclem11 16189 ruclem12 16190 prmreclem6 16860 imasaddfnlem 17480 imasvscafn 17489 cycsubgcl 19123 ghmrn 19145 ghmnsgima 19156 pgpssslw 19525 gexex 19764 dprdfcntz 19928 znf1o 21328 frlmlbs 21573 lindfrn 21597 ptcnplem 23347 kqt0lem 23462 isr0 23463 regr1lem2 23466 uzrest 23623 tmdgsum2 23822 imasf1oxmet 24103 imasf1omet 24104 bndth 24706 evth 24707 ovolficcss 25220 ovollb2lem 25239 ovolunlem1 25248 ovoliunlem1 25253 ovoliunlem2 25254 ovoliun2 25257 ovolscalem1 25264 ovolicc1 25267 voliunlem2 25302 voliunlem3 25303 ioombl1lem4 25312 uniioovol 25330 uniioombllem2 25334 uniioombllem3 25336 uniioombllem6 25339 volsup2 25356 vitalilem3 25361 mbfsup 25415 mbfinf 25416 mbflimsup 25417 itg1ge0 25437 itg1mulc 25456 itg1climres 25466 mbfi1fseqlem4 25470 itg2seq 25494 itg2monolem1 25502 itg2mono 25505 itg2i1fseq2 25508 itg2gt0 25512 itg2cnlem1 25513 itg2cn 25515 limciun 25645 plycpn 26036 hmopidmchi 31669 hmopidmpji 31670 rge0scvg 33225 mclsax 34856 mblfinlem2 36831 ismtyhmeolem 36977 nacsfix 41754 fnwe2lem2 42097 gneispace 43189 climinf 44622 liminfval2 44784 |
Copyright terms: Public domain | W3C validator |