| Step | Hyp | Ref
| Expression |
| 1 | | cnptop1 23250 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) |
| 2 | | cnprest.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 3 | 2 | cnprcl 23253 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ 𝑋) |
| 4 | 1, 3 | jca 511 |
. . 3
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) |
| 5 | 4 | a1i 11 |
. 2
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋))) |
| 6 | | cnptop1 23250 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → 𝐽 ∈ Top) |
| 7 | 2 | cnprcl 23253 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → 𝑃 ∈ 𝑋) |
| 8 | 6, 7 | jca 511 |
. . 3
⊢ (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) |
| 9 | 8 | a1i 11 |
. 2
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋))) |
| 10 | | simpl2 1193 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐹:𝑋⟶𝐵) |
| 11 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝑃 ∈ 𝑋) |
| 12 | 10, 11 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹‘𝑃) ∈ 𝐵) |
| 13 | 12 | biantrud 531 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹‘𝑃) ∈ 𝑥 ↔ ((𝐹‘𝑃) ∈ 𝑥 ∧ (𝐹‘𝑃) ∈ 𝐵))) |
| 14 | | elin 3967 |
. . . . . . . 8
⊢ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) ↔ ((𝐹‘𝑃) ∈ 𝑥 ∧ (𝐹‘𝑃) ∈ 𝐵)) |
| 15 | 13, 14 | bitr4di 289 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹‘𝑃) ∈ 𝑥 ↔ (𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵))) |
| 16 | | imassrn 6089 |
. . . . . . . . . . . 12
⊢ (𝐹 “ 𝑦) ⊆ ran 𝐹 |
| 17 | 10 | frnd 6744 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ran 𝐹 ⊆ 𝐵) |
| 18 | 16, 17 | sstrid 3995 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 “ 𝑦) ⊆ 𝐵) |
| 19 | 18 | biantrud 531 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹 “ 𝑦) ⊆ 𝑥 ↔ ((𝐹 “ 𝑦) ⊆ 𝑥 ∧ (𝐹 “ 𝑦) ⊆ 𝐵))) |
| 20 | | ssin 4239 |
. . . . . . . . . 10
⊢ (((𝐹 “ 𝑦) ⊆ 𝑥 ∧ (𝐹 “ 𝑦) ⊆ 𝐵) ↔ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)) |
| 21 | 19, 20 | bitrdi 287 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹 “ 𝑦) ⊆ 𝑥 ↔ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))) |
| 22 | 21 | anbi2d 630 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
| 23 | 22 | rexbidv 3179 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥) ↔ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
| 24 | 15, 23 | imbi12d 344 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) ↔ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
| 25 | 24 | ralbidv 3178 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) ↔ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
| 26 | | vex 3484 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 27 | 26 | inex1 5317 |
. . . . . . 7
⊢ (𝑥 ∩ 𝐵) ∈ V |
| 28 | 27 | a1i 11 |
. . . . . 6
⊢ ((((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) ∧ 𝑥 ∈ 𝐾) → (𝑥 ∩ 𝐵) ∈ V) |
| 29 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐾 ∈ Top) |
| 30 | | cnprest.2 |
. . . . . . . . . 10
⊢ 𝑌 = ∪
𝐾 |
| 31 | | uniexg 7760 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Top → ∪ 𝐾
∈ V) |
| 32 | 30, 31 | eqeltrid 2845 |
. . . . . . . . 9
⊢ (𝐾 ∈ Top → 𝑌 ∈ V) |
| 33 | 29, 32 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝑌 ∈ V) |
| 34 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐵 ⊆ 𝑌) |
| 35 | 33, 34 | ssexd 5324 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐵 ∈ V) |
| 36 | | elrest 17472 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑧 = (𝑥 ∩ 𝐵))) |
| 37 | 29, 35, 36 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝑧 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑧 = (𝑥 ∩ 𝐵))) |
| 38 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 ∩ 𝐵) → ((𝐹‘𝑃) ∈ 𝑧 ↔ (𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵))) |
| 39 | | sseq2 4010 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 ∩ 𝐵) → ((𝐹 “ 𝑦) ⊆ 𝑧 ↔ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))) |
| 40 | 39 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥 ∩ 𝐵) → ((𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
| 41 | 40 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 ∩ 𝐵) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧) ↔ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
| 42 | 38, 41 | imbi12d 344 |
. . . . . . 7
⊢ (𝑧 = (𝑥 ∩ 𝐵) → (((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)) ↔ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
| 43 | 42 | adantl 481 |
. . . . . 6
⊢ ((((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)) ↔ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
| 44 | 28, 37, 43 | ralxfr2d 5410 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)) ↔ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
| 45 | 25, 44 | bitr4d 282 |
. . . 4
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) ↔ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)))) |
| 46 | 10, 34 | fssd 6753 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐹:𝑋⟶𝑌) |
| 47 | | simprl 771 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐽 ∈ Top) |
| 48 | 2, 30 | iscnp2 23247 |
. . . . . . 7
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))))) |
| 49 | 48 | baib 535 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))))) |
| 50 | 47, 29, 11, 49 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))))) |
| 51 | 46, 50 | mpbirand 707 |
. . . 4
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)))) |
| 52 | 2 | toptopon 22923 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 53 | 47, 52 | sylib 218 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 54 | 30 | toptopon 22923 |
. . . . . . . 8
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
| 55 | 29, 54 | sylib 218 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐾 ∈ (TopOn‘𝑌)) |
| 56 | | resttopon 23169 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ⊆ 𝑌) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
| 57 | 55, 34, 56 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
| 58 | | iscnp 23245 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) ↔ (𝐹:𝑋⟶𝐵 ∧ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧))))) |
| 59 | 53, 57, 11, 58 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) ↔ (𝐹:𝑋⟶𝐵 ∧ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧))))) |
| 60 | 10, 59 | mpbirand 707 |
. . . 4
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) ↔ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)))) |
| 61 | 45, 51, 60 | 3bitr4d 311 |
. . 3
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃))) |
| 62 | 61 | ex 412 |
. 2
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃)))) |
| 63 | 5, 9, 62 | pm5.21ndd 379 |
1
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃))) |