MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest2 Structured version   Visualization version   GIF version

Theorem cnprest2 21895
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnprest2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))

Proof of Theorem cnprest2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 21847 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2 cnprest.1 . . . . 5 𝑋 = 𝐽
32cnprcl 21850 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
41, 3jca 515 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
54a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
6 cnptop1 21847 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝐽 ∈ Top)
72cnprcl 21850 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝑃𝑋)
86, 7jca 515 . . 3 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
98a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
10 simpl2 1189 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝐵)
11 simprr 772 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑃𝑋)
1210, 11ffvelrnd 6829 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑃) ∈ 𝐵)
1312biantrud 535 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵)))
14 elin 3897 . . . . . . . 8 ((𝐹𝑃) ∈ (𝑥𝐵) ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵))
1513, 14syl6bbr 292 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
16 imassrn 5907 . . . . . . . . . . . 12 (𝐹𝑦) ⊆ ran 𝐹
1710frnd 6494 . . . . . . . . . . . 12 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ran 𝐹𝐵)
1816, 17sstrid 3926 . . . . . . . . . . 11 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑦) ⊆ 𝐵)
1918biantrud 535 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ ((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵)))
20 ssin 4157 . . . . . . . . . 10 (((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵) ↔ (𝐹𝑦) ⊆ (𝑥𝐵))
2119, 20syl6bb 290 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
2221anbi2d 631 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2322rexbidv 3256 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2415, 23imbi12d 348 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
2524ralbidv 3162 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
26 vex 3444 . . . . . . . 8 𝑥 ∈ V
2726inex1 5185 . . . . . . 7 (𝑥𝐵) ∈ V
2827a1i 11 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
29 simpl1 1188 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ Top)
30 cnprest.2 . . . . . . . . . 10 𝑌 = 𝐾
31 uniexg 7446 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ V)
3230, 31eqeltrid 2894 . . . . . . . . 9 (𝐾 ∈ Top → 𝑌 ∈ V)
3329, 32syl 17 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑌 ∈ V)
34 simpl3 1190 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵𝑌)
3533, 34ssexd 5192 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵 ∈ V)
36 elrest 16693 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
3729, 35, 36syl2anc 587 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
38 eleq2 2878 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝐹𝑃) ∈ 𝑧 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
39 sseq2 3941 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → ((𝐹𝑦) ⊆ 𝑧 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
4039anbi2d 631 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4140rexbidv 3256 . . . . . . . 8 (𝑧 = (𝑥𝐵) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4238, 41imbi12d 348 . . . . . . 7 (𝑧 = (𝑥𝐵) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4342adantl 485 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑧 = (𝑥𝐵)) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4428, 37, 43ralxfr2d 5276 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4525, 44bitr4d 285 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
4610, 34fssd 6502 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝑌)
47 simprl 770 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ Top)
482, 30iscnp2 21844 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
4948baib 539 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5047, 29, 11, 49syl3anc 1368 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5146, 50mpbirand 706 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))))
522toptopon 21522 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5347, 52sylib 221 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
5430toptopon 21522 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
5529, 54sylib 221 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
56 resttopon 21766 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
5755, 34, 56syl2anc 587 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
58 iscnp 21842 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
5953, 57, 11, 58syl3anc 1368 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6010, 59mpbirand 706 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
6145, 51, 603bitr4d 314 . . 3 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
6261ex 416 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃))))
635, 9, 62pm5.21ndd 384 1 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cin 3880  wss 3881   cuni 4800  ran crn 5520  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515   CnP ccnp 21830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cnp 21833
This theorem is referenced by:  limccnp  24494  limccnp2  24495  dirkercncflem4  42748  dirkercncf  42749  fouriercnp  42868
  Copyright terms: Public domain W3C validator