MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest2 Structured version   Visualization version   GIF version

Theorem cnprest2 21898
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnprest2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))

Proof of Theorem cnprest2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 21850 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2 cnprest.1 . . . . 5 𝑋 = 𝐽
32cnprcl 21853 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
41, 3jca 514 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
54a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
6 cnptop1 21850 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝐽 ∈ Top)
72cnprcl 21853 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝑃𝑋)
86, 7jca 514 . . 3 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
98a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
10 simpl2 1188 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝐵)
11 simprr 771 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑃𝑋)
1210, 11ffvelrnd 6852 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑃) ∈ 𝐵)
1312biantrud 534 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵)))
14 elin 4169 . . . . . . . 8 ((𝐹𝑃) ∈ (𝑥𝐵) ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵))
1513, 14syl6bbr 291 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
16 imassrn 5940 . . . . . . . . . . . 12 (𝐹𝑦) ⊆ ran 𝐹
1710frnd 6521 . . . . . . . . . . . 12 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ran 𝐹𝐵)
1816, 17sstrid 3978 . . . . . . . . . . 11 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑦) ⊆ 𝐵)
1918biantrud 534 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ ((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵)))
20 ssin 4207 . . . . . . . . . 10 (((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵) ↔ (𝐹𝑦) ⊆ (𝑥𝐵))
2119, 20syl6bb 289 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
2221anbi2d 630 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2322rexbidv 3297 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2415, 23imbi12d 347 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
2524ralbidv 3197 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
26 vex 3497 . . . . . . . 8 𝑥 ∈ V
2726inex1 5221 . . . . . . 7 (𝑥𝐵) ∈ V
2827a1i 11 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
29 simpl1 1187 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ Top)
30 cnprest.2 . . . . . . . . . 10 𝑌 = 𝐾
31 uniexg 7466 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ V)
3230, 31eqeltrid 2917 . . . . . . . . 9 (𝐾 ∈ Top → 𝑌 ∈ V)
3329, 32syl 17 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑌 ∈ V)
34 simpl3 1189 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵𝑌)
3533, 34ssexd 5228 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵 ∈ V)
36 elrest 16701 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
3729, 35, 36syl2anc 586 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
38 eleq2 2901 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝐹𝑃) ∈ 𝑧 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
39 sseq2 3993 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → ((𝐹𝑦) ⊆ 𝑧 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
4039anbi2d 630 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4140rexbidv 3297 . . . . . . . 8 (𝑧 = (𝑥𝐵) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4238, 41imbi12d 347 . . . . . . 7 (𝑧 = (𝑥𝐵) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4342adantl 484 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑧 = (𝑥𝐵)) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4428, 37, 43ralxfr2d 5311 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4525, 44bitr4d 284 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
4610, 34fssd 6528 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝑌)
47 simprl 769 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ Top)
482, 30iscnp2 21847 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
4948baib 538 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5047, 29, 11, 49syl3anc 1367 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5146, 50mpbirand 705 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))))
522toptopon 21525 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5347, 52sylib 220 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
5430toptopon 21525 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
5529, 54sylib 220 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
56 resttopon 21769 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
5755, 34, 56syl2anc 586 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
58 iscnp 21845 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
5953, 57, 11, 58syl3anc 1367 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6010, 59mpbirand 705 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
6145, 51, 603bitr4d 313 . . 3 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
6261ex 415 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃))))
635, 9, 62pm5.21ndd 383 1 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cin 3935  wss 3936   cuni 4838  ran crn 5556  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  t crest 16694  Topctop 21501  TopOnctopon 21518   CnP ccnp 21833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-fin 8513  df-fi 8875  df-rest 16696  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554  df-cnp 21836
This theorem is referenced by:  limccnp  24489  limccnp2  24490  dirkercncflem4  42411  dirkercncf  42412  fouriercnp  42531
  Copyright terms: Public domain W3C validator