MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimrest Structured version   Visualization version   GIF version

Theorem flimrest 23134
Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
flimrest ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fLim (𝐹t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌))

Proof of Theorem flimrest
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐽 ∈ (TopOn‘𝑋))
2 filelss 23003 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
323adant1 1129 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
4 resttopon 22312 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
51, 3, 4syl2anc 584 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
6 filfbas 22999 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
763ad2ant2 1133 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
8 simp3 1137 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
9 fbncp 22990 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
107, 8, 9syl2anc 584 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
11 simp2 1136 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
12 trfil3 23039 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1311, 3, 12syl2anc 584 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1410, 13mpbird 256 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
15 flimopn 23126 . . . . 5 (((𝐽t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
165, 14, 15syl2anc 584 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
17 simpll2 1212 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝐹 ∈ (Fil‘𝑋))
18 simpll3 1213 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝑌𝐹)
19 elrestr 17139 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹𝑧𝐹) → (𝑧𝑌) ∈ (𝐹t 𝑌))
20193expia 1120 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧𝐹 → (𝑧𝑌) ∈ (𝐹t 𝑌)))
2117, 18, 20syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝐹 → (𝑧𝑌) ∈ (𝐹t 𝑌)))
22 trfilss 23040 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ⊆ 𝐹)
2317, 18, 22syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝐹t 𝑌) ⊆ 𝐹)
2423sseld 3920 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ (𝐹t 𝑌) → (𝑧𝑌) ∈ 𝐹))
25 inss1 4162 . . . . . . . . . . . 12 (𝑧𝑌) ⊆ 𝑧
2625a1i 11 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝑌) ⊆ 𝑧)
27 simpl1 1190 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐽 ∈ (TopOn‘𝑋))
28 toponss 22076 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
2927, 28sylan 580 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝑧𝑋)
30 filss 23004 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑧𝑌) ∈ 𝐹𝑧𝑋 ∧ (𝑧𝑌) ⊆ 𝑧)) → 𝑧𝐹)
31303exp2 1353 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ((𝑧𝑌) ∈ 𝐹 → (𝑧𝑋 → ((𝑧𝑌) ⊆ 𝑧𝑧𝐹))))
3231com24 95 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → ((𝑧𝑌) ⊆ 𝑧 → (𝑧𝑋 → ((𝑧𝑌) ∈ 𝐹𝑧𝐹))))
3317, 26, 29, 32syl3c 66 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ 𝐹𝑧𝐹))
3424, 33syld 47 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ (𝐹t 𝑌) → 𝑧𝐹))
3521, 34impbid 211 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝐹 ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
3635imbi2d 341 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑥𝑧𝑧𝐹) ↔ (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
3736ralbidva 3111 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑧𝐽 (𝑥𝑧𝑧𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
38 simpl2 1191 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐹 ∈ (Fil‘𝑋))
393sselda 3921 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑥𝑋)
40 flimopn 23126 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹))))
4140baibd 540 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝑋) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹)))
4227, 38, 39, 41syl21anc 835 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹)))
43 vex 3436 . . . . . . . . 9 𝑧 ∈ V
4443inex1 5241 . . . . . . . 8 (𝑧𝑌) ∈ V
4544a1i 11 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝑌) ∈ V)
46 simpl3 1192 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑌𝐹)
47 elrest 17138 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑧𝐽 𝑦 = (𝑧𝑌)))
4827, 46, 47syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑧𝐽 𝑦 = (𝑧𝑌)))
49 eleq2 2827 . . . . . . . . 9 (𝑦 = (𝑧𝑌) → (𝑥𝑦𝑥 ∈ (𝑧𝑌)))
50 elin 3903 . . . . . . . . . . 11 (𝑥 ∈ (𝑧𝑌) ↔ (𝑥𝑧𝑥𝑌))
5150rbaib 539 . . . . . . . . . 10 (𝑥𝑌 → (𝑥 ∈ (𝑧𝑌) ↔ 𝑥𝑧))
5251adantl 482 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝑧𝑌) ↔ 𝑥𝑧))
5349, 52sylan9bbr 511 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → (𝑥𝑦𝑥𝑧))
54 eleq1 2826 . . . . . . . . 9 (𝑦 = (𝑧𝑌) → (𝑦 ∈ (𝐹t 𝑌) ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
5554adantl 482 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → (𝑦 ∈ (𝐹t 𝑌) ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
5653, 55imbi12d 345 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → ((𝑥𝑦𝑦 ∈ (𝐹t 𝑌)) ↔ (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
5745, 48, 56ralxfr2d 5333 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)) ↔ ∀𝑧𝐽 (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
5837, 42, 573bitr4d 311 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌))))
5958pm5.32da 579 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
6016, 59bitr4d 281 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹))))
61 ancom 461 . . . 4 ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥𝑌))
62 elin 3903 . . . 4 (𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥𝑌))
6361, 62bitr4i 277 . . 3 ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌))
6460, 63bitrdi 287 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌)))
6564eqrdv 2736 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fLim (𝐹t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cin 3886  wss 3887  cfv 6433  (class class class)co 7275  t crest 17131  fBascfbas 20585  TopOnctopon 22059  Filcfil 22996   fLim cflim 23085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-ntr 22171  df-nei 22249  df-fil 22997  df-flim 23090
This theorem is referenced by:  metsscmetcld  24479  cmetss  24480  minveclem4a  24594
  Copyright terms: Public domain W3C validator