MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimrest Structured version   Visualization version   GIF version

Theorem flimrest 23720
Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
flimrest ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fLim (𝐹t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌))

Proof of Theorem flimrest
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐽 ∈ (TopOn‘𝑋))
2 filelss 23589 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
323adant1 1129 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
4 resttopon 22898 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
51, 3, 4syl2anc 583 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
6 filfbas 23585 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
763ad2ant2 1133 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
8 simp3 1137 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
9 fbncp 23576 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
107, 8, 9syl2anc 583 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
11 simp2 1136 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
12 trfil3 23625 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1311, 3, 12syl2anc 583 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1410, 13mpbird 257 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
15 flimopn 23712 . . . . 5 (((𝐽t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
165, 14, 15syl2anc 583 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
17 simpll2 1212 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝐹 ∈ (Fil‘𝑋))
18 simpll3 1213 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝑌𝐹)
19 elrestr 17381 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹𝑧𝐹) → (𝑧𝑌) ∈ (𝐹t 𝑌))
20193expia 1120 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧𝐹 → (𝑧𝑌) ∈ (𝐹t 𝑌)))
2117, 18, 20syl2anc 583 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝐹 → (𝑧𝑌) ∈ (𝐹t 𝑌)))
22 trfilss 23626 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ⊆ 𝐹)
2317, 18, 22syl2anc 583 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝐹t 𝑌) ⊆ 𝐹)
2423sseld 3981 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ (𝐹t 𝑌) → (𝑧𝑌) ∈ 𝐹))
25 inss1 4228 . . . . . . . . . . . 12 (𝑧𝑌) ⊆ 𝑧
2625a1i 11 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝑌) ⊆ 𝑧)
27 simpl1 1190 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐽 ∈ (TopOn‘𝑋))
28 toponss 22662 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
2927, 28sylan 579 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝑧𝑋)
30 filss 23590 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑧𝑌) ∈ 𝐹𝑧𝑋 ∧ (𝑧𝑌) ⊆ 𝑧)) → 𝑧𝐹)
31303exp2 1353 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ((𝑧𝑌) ∈ 𝐹 → (𝑧𝑋 → ((𝑧𝑌) ⊆ 𝑧𝑧𝐹))))
3231com24 95 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → ((𝑧𝑌) ⊆ 𝑧 → (𝑧𝑋 → ((𝑧𝑌) ∈ 𝐹𝑧𝐹))))
3317, 26, 29, 32syl3c 66 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ 𝐹𝑧𝐹))
3424, 33syld 47 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ (𝐹t 𝑌) → 𝑧𝐹))
3521, 34impbid 211 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝐹 ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
3635imbi2d 340 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑥𝑧𝑧𝐹) ↔ (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
3736ralbidva 3174 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑧𝐽 (𝑥𝑧𝑧𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
38 simpl2 1191 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐹 ∈ (Fil‘𝑋))
393sselda 3982 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑥𝑋)
40 flimopn 23712 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹))))
4140baibd 539 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝑋) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹)))
4227, 38, 39, 41syl21anc 835 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹)))
43 vex 3477 . . . . . . . . 9 𝑧 ∈ V
4443inex1 5317 . . . . . . . 8 (𝑧𝑌) ∈ V
4544a1i 11 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝑌) ∈ V)
46 simpl3 1192 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑌𝐹)
47 elrest 17380 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑧𝐽 𝑦 = (𝑧𝑌)))
4827, 46, 47syl2anc 583 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑧𝐽 𝑦 = (𝑧𝑌)))
49 eleq2 2821 . . . . . . . . 9 (𝑦 = (𝑧𝑌) → (𝑥𝑦𝑥 ∈ (𝑧𝑌)))
50 elin 3964 . . . . . . . . . . 11 (𝑥 ∈ (𝑧𝑌) ↔ (𝑥𝑧𝑥𝑌))
5150rbaib 538 . . . . . . . . . 10 (𝑥𝑌 → (𝑥 ∈ (𝑧𝑌) ↔ 𝑥𝑧))
5251adantl 481 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝑧𝑌) ↔ 𝑥𝑧))
5349, 52sylan9bbr 510 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → (𝑥𝑦𝑥𝑧))
54 eleq1 2820 . . . . . . . . 9 (𝑦 = (𝑧𝑌) → (𝑦 ∈ (𝐹t 𝑌) ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
5554adantl 481 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → (𝑦 ∈ (𝐹t 𝑌) ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
5653, 55imbi12d 344 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → ((𝑥𝑦𝑦 ∈ (𝐹t 𝑌)) ↔ (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
5745, 48, 56ralxfr2d 5408 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)) ↔ ∀𝑧𝐽 (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
5837, 42, 573bitr4d 311 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌))))
5958pm5.32da 578 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
6016, 59bitr4d 282 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹))))
61 ancom 460 . . . 4 ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥𝑌))
62 elin 3964 . . . 4 (𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥𝑌))
6361, 62bitr4i 278 . . 3 ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌))
6460, 63bitrdi 287 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌)))
6564eqrdv 2729 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fLim (𝐹t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  cdif 3945  cin 3947  wss 3948  cfv 6543  (class class class)co 7412  t crest 17373  fBascfbas 21136  TopOnctopon 22645  Filcfil 23582   fLim cflim 23671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-en 8946  df-fin 8949  df-fi 9412  df-rest 17375  df-topgen 17396  df-fbas 21145  df-fg 21146  df-top 22629  df-topon 22646  df-bases 22682  df-ntr 22757  df-nei 22835  df-fil 23583  df-flim 23676
This theorem is referenced by:  metsscmetcld  25076  cmetss  25077  minveclem4a  25191
  Copyright terms: Public domain W3C validator