Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | filelss 23003 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
3 | 2 | 3adant1 1129 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
4 | | resttopon 22312 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
5 | 1, 3, 4 | syl2anc 584 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
6 | | filfbas 22999 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
7 | 6 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋)) |
8 | | simp3 1137 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ∈ 𝐹) |
9 | | fbncp 22990 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
10 | 7, 8, 9 | syl2anc 584 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
11 | | simp2 1136 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
12 | | trfil3 23039 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
13 | 11, 3, 12 | syl2anc 584 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
14 | 10, 13 | mpbird 256 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) |
15 | | flimopn 23126 |
. . . . 5
⊢ (((𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌))))) |
16 | 5, 14, 15 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌))))) |
17 | | simpll2 1212 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → 𝐹 ∈ (Fil‘𝑋)) |
18 | | simpll3 1213 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → 𝑌 ∈ 𝐹) |
19 | | elrestr 17139 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)) |
20 | 19 | 3expia 1120 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑧 ∈ 𝐹 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
21 | 17, 18, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∈ 𝐹 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
22 | | trfilss 23040 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ↾t 𝑌) ⊆ 𝐹) |
23 | 17, 18, 22 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝐹 ↾t 𝑌) ⊆ 𝐹) |
24 | 23 | sseld 3920 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌) → (𝑧 ∩ 𝑌) ∈ 𝐹)) |
25 | | inss1 4162 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝑌) ⊆ 𝑧 |
26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∩ 𝑌) ⊆ 𝑧) |
27 | | simpl1 1190 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
28 | | toponss 22076 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
29 | 27, 28 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
30 | | filss 23004 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑧 ∩ 𝑌) ∈ 𝐹 ∧ 𝑧 ⊆ 𝑋 ∧ (𝑧 ∩ 𝑌) ⊆ 𝑧)) → 𝑧 ∈ 𝐹) |
31 | 30 | 3exp2 1353 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑧 ∩ 𝑌) ∈ 𝐹 → (𝑧 ⊆ 𝑋 → ((𝑧 ∩ 𝑌) ⊆ 𝑧 → 𝑧 ∈ 𝐹)))) |
32 | 31 | com24 95 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑧 ∩ 𝑌) ⊆ 𝑧 → (𝑧 ⊆ 𝑋 → ((𝑧 ∩ 𝑌) ∈ 𝐹 → 𝑧 ∈ 𝐹)))) |
33 | 17, 26, 29, 32 | syl3c 66 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑧 ∩ 𝑌) ∈ 𝐹 → 𝑧 ∈ 𝐹)) |
34 | 24, 33 | syld 47 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌) → 𝑧 ∈ 𝐹)) |
35 | 21, 34 | impbid 211 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∈ 𝐹 ↔ (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
36 | 35 | imbi2d 341 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹) ↔ (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
37 | 36 | ralbidva 3111 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
38 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐹 ∈ (Fil‘𝑋)) |
39 | 3 | sselda 3921 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
40 | | flimopn 23126 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹)))) |
41 | 40 | baibd 540 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹))) |
42 | 27, 38, 39, 41 | syl21anc 835 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹))) |
43 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
44 | 43 | inex1 5241 |
. . . . . . . 8
⊢ (𝑧 ∩ 𝑌) ∈ V |
45 | 44 | a1i 11 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∩ 𝑌) ∈ V) |
46 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ 𝐹) |
47 | | elrest 17138 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑧 ∈ 𝐽 𝑦 = (𝑧 ∩ 𝑌))) |
48 | 27, 46, 47 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑧 ∈ 𝐽 𝑦 = (𝑧 ∩ 𝑌))) |
49 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑦 = (𝑧 ∩ 𝑌) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑧 ∩ 𝑌))) |
50 | | elin 3903 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑧 ∩ 𝑌) ↔ (𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑌)) |
51 | 50 | rbaib 539 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑌 → (𝑥 ∈ (𝑧 ∩ 𝑌) ↔ 𝑥 ∈ 𝑧)) |
52 | 51 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝑧 ∩ 𝑌) ↔ 𝑥 ∈ 𝑧)) |
53 | 49, 52 | sylan9bbr 511 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑧 ∩ 𝑌)) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧)) |
54 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑦 = (𝑧 ∩ 𝑌) → (𝑦 ∈ (𝐹 ↾t 𝑌) ↔ (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
55 | 54 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑧 ∩ 𝑌)) → (𝑦 ∈ (𝐹 ↾t 𝑌) ↔ (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
56 | 53, 55 | imbi12d 345 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑧 ∩ 𝑌)) → ((𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
57 | 45, 48, 56 | ralxfr2d 5333 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌)) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
58 | 37, 42, 57 | 3bitr4d 311 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌)))) |
59 | 58 | pm5.32da 579 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌))))) |
60 | 16, 59 | bitr4d 281 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)))) |
61 | | ancom 461 |
. . . 4
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ 𝑌)) |
62 | | elin 3903 |
. . . 4
⊢ (𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ 𝑌)) |
63 | 61, 62 | bitr4i 277 |
. . 3
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌)) |
64 | 60, 63 | bitrdi 287 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌))) |
65 | 64 | eqrdv 2736 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌)) |