MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimrest Structured version   Visualization version   GIF version

Theorem flimrest 23877
Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
flimrest ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fLim (𝐹t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌))

Proof of Theorem flimrest
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐽 ∈ (TopOn‘𝑋))
2 filelss 23746 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
323adant1 1130 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
4 resttopon 23055 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
51, 3, 4syl2anc 584 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
6 filfbas 23742 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
763ad2ant2 1134 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
8 simp3 1138 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
9 fbncp 23733 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
107, 8, 9syl2anc 584 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
11 simp2 1137 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
12 trfil3 23782 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1311, 3, 12syl2anc 584 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1410, 13mpbird 257 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
15 flimopn 23869 . . . . 5 (((𝐽t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
165, 14, 15syl2anc 584 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
17 simpll2 1214 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝐹 ∈ (Fil‘𝑋))
18 simpll3 1215 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝑌𝐹)
19 elrestr 17398 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹𝑧𝐹) → (𝑧𝑌) ∈ (𝐹t 𝑌))
20193expia 1121 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧𝐹 → (𝑧𝑌) ∈ (𝐹t 𝑌)))
2117, 18, 20syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝐹 → (𝑧𝑌) ∈ (𝐹t 𝑌)))
22 trfilss 23783 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ⊆ 𝐹)
2317, 18, 22syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝐹t 𝑌) ⊆ 𝐹)
2423sseld 3948 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ (𝐹t 𝑌) → (𝑧𝑌) ∈ 𝐹))
25 inss1 4203 . . . . . . . . . . . 12 (𝑧𝑌) ⊆ 𝑧
2625a1i 11 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝑌) ⊆ 𝑧)
27 simpl1 1192 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐽 ∈ (TopOn‘𝑋))
28 toponss 22821 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
2927, 28sylan 580 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → 𝑧𝑋)
30 filss 23747 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑧𝑌) ∈ 𝐹𝑧𝑋 ∧ (𝑧𝑌) ⊆ 𝑧)) → 𝑧𝐹)
31303exp2 1355 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ((𝑧𝑌) ∈ 𝐹 → (𝑧𝑋 → ((𝑧𝑌) ⊆ 𝑧𝑧𝐹))))
3231com24 95 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → ((𝑧𝑌) ⊆ 𝑧 → (𝑧𝑋 → ((𝑧𝑌) ∈ 𝐹𝑧𝐹))))
3317, 26, 29, 32syl3c 66 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ 𝐹𝑧𝐹))
3424, 33syld 47 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑧𝑌) ∈ (𝐹t 𝑌) → 𝑧𝐹))
3521, 34impbid 212 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝐹 ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
3635imbi2d 340 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → ((𝑥𝑧𝑧𝐹) ↔ (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
3736ralbidva 3155 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑧𝐽 (𝑥𝑧𝑧𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
38 simpl2 1193 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐹 ∈ (Fil‘𝑋))
393sselda 3949 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑥𝑋)
40 flimopn 23869 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹))))
4140baibd 539 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝑋) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹)))
4227, 38, 39, 41syl21anc 837 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧𝐽 (𝑥𝑧𝑧𝐹)))
43 vex 3454 . . . . . . . . 9 𝑧 ∈ V
4443inex1 5275 . . . . . . . 8 (𝑧𝑌) ∈ V
4544a1i 11 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧𝐽) → (𝑧𝑌) ∈ V)
46 simpl3 1194 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑌𝐹)
47 elrest 17397 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑧𝐽 𝑦 = (𝑧𝑌)))
4827, 46, 47syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑧𝐽 𝑦 = (𝑧𝑌)))
49 eleq2 2818 . . . . . . . . 9 (𝑦 = (𝑧𝑌) → (𝑥𝑦𝑥 ∈ (𝑧𝑌)))
50 elin 3933 . . . . . . . . . . 11 (𝑥 ∈ (𝑧𝑌) ↔ (𝑥𝑧𝑥𝑌))
5150rbaib 538 . . . . . . . . . 10 (𝑥𝑌 → (𝑥 ∈ (𝑧𝑌) ↔ 𝑥𝑧))
5251adantl 481 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝑧𝑌) ↔ 𝑥𝑧))
5349, 52sylan9bbr 510 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → (𝑥𝑦𝑥𝑧))
54 eleq1 2817 . . . . . . . . 9 (𝑦 = (𝑧𝑌) → (𝑦 ∈ (𝐹t 𝑌) ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
5554adantl 481 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → (𝑦 ∈ (𝐹t 𝑌) ↔ (𝑧𝑌) ∈ (𝐹t 𝑌)))
5653, 55imbi12d 344 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑧𝑌)) → ((𝑥𝑦𝑦 ∈ (𝐹t 𝑌)) ↔ (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
5745, 48, 56ralxfr2d 5368 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)) ↔ ∀𝑧𝐽 (𝑥𝑧 → (𝑧𝑌) ∈ (𝐹t 𝑌))))
5837, 42, 573bitr4d 311 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌))))
5958pm5.32da 579 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦𝑦 ∈ (𝐹t 𝑌)))))
6016, 59bitr4d 282 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹))))
61 ancom 460 . . . 4 ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥𝑌))
62 elin 3933 . . . 4 (𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥𝑌))
6361, 62bitr4i 278 . . 3 ((𝑥𝑌𝑥 ∈ (𝐽 fLim 𝐹)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌))
6460, 63bitrdi 287 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fLim (𝐹t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌)))
6564eqrdv 2728 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fLim (𝐹t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  t crest 17390  fBascfbas 21259  TopOnctopon 22804  Filcfil 23739   fLim cflim 23828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-bases 22840  df-ntr 22914  df-nei 22992  df-fil 23740  df-flim 23833
This theorem is referenced by:  metsscmetcld  25222  cmetss  25223  minveclem4a  25337
  Copyright terms: Public domain W3C validator