| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | filelss 23860 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
| 3 | 2 | 3adant1 1131 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ⊆ 𝑋) |
| 4 | | resttopon 23169 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 5 | 1, 3, 4 | syl2anc 584 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 6 | | filfbas 23856 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| 7 | 6 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋)) |
| 8 | | simp3 1139 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝑌 ∈ 𝐹) |
| 9 | | fbncp 23847 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
| 10 | 7, 8, 9 | syl2anc 584 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑌) ∈ 𝐹) |
| 11 | | simp2 1138 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
| 12 | | trfil3 23896 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
| 13 | 11, 3, 12 | syl2anc 584 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐹 ↾t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋 ∖ 𝑌) ∈ 𝐹)) |
| 14 | 10, 13 | mpbird 257 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) |
| 15 | | flimopn 23983 |
. . . . 5
⊢ (((𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹 ↾t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌))))) |
| 16 | 5, 14, 15 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌))))) |
| 17 | | simpll2 1214 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → 𝐹 ∈ (Fil‘𝑋)) |
| 18 | | simpll3 1215 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → 𝑌 ∈ 𝐹) |
| 19 | | elrestr 17473 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)) |
| 20 | 19 | 3expia 1122 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑧 ∈ 𝐹 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
| 21 | 17, 18, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∈ 𝐹 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
| 22 | | trfilss 23897 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝐹 ↾t 𝑌) ⊆ 𝐹) |
| 23 | 17, 18, 22 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝐹 ↾t 𝑌) ⊆ 𝐹) |
| 24 | 23 | sseld 3982 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌) → (𝑧 ∩ 𝑌) ∈ 𝐹)) |
| 25 | | inss1 4237 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝑌) ⊆ 𝑧 |
| 26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∩ 𝑌) ⊆ 𝑧) |
| 27 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
| 28 | | toponss 22933 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
| 29 | 27, 28 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
| 30 | | filss 23861 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝑧 ∩ 𝑌) ∈ 𝐹 ∧ 𝑧 ⊆ 𝑋 ∧ (𝑧 ∩ 𝑌) ⊆ 𝑧)) → 𝑧 ∈ 𝐹) |
| 31 | 30 | 3exp2 1355 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑧 ∩ 𝑌) ∈ 𝐹 → (𝑧 ⊆ 𝑋 → ((𝑧 ∩ 𝑌) ⊆ 𝑧 → 𝑧 ∈ 𝐹)))) |
| 32 | 31 | com24 95 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑧 ∩ 𝑌) ⊆ 𝑧 → (𝑧 ⊆ 𝑋 → ((𝑧 ∩ 𝑌) ∈ 𝐹 → 𝑧 ∈ 𝐹)))) |
| 33 | 17, 26, 29, 32 | syl3c 66 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑧 ∩ 𝑌) ∈ 𝐹 → 𝑧 ∈ 𝐹)) |
| 34 | 24, 33 | syld 47 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌) → 𝑧 ∈ 𝐹)) |
| 35 | 21, 34 | impbid 212 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∈ 𝐹 ↔ (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
| 36 | 35 | imbi2d 340 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → ((𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹) ↔ (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
| 37 | 36 | ralbidva 3176 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
| 38 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝐹 ∈ (Fil‘𝑋)) |
| 39 | 3 | sselda 3983 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
| 40 | | flimopn 23983 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹)))) |
| 41 | 40 | baibd 539 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹))) |
| 42 | 27, 38, 39, 41 | syl21anc 838 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹))) |
| 43 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 44 | 43 | inex1 5317 |
. . . . . . . 8
⊢ (𝑧 ∩ 𝑌) ∈ V |
| 45 | 44 | a1i 11 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝐽) → (𝑧 ∩ 𝑌) ∈ V) |
| 46 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → 𝑌 ∈ 𝐹) |
| 47 | | elrest 17472 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑧 ∈ 𝐽 𝑦 = (𝑧 ∩ 𝑌))) |
| 48 | 27, 46, 47 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑦 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑧 ∈ 𝐽 𝑦 = (𝑧 ∩ 𝑌))) |
| 49 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑦 = (𝑧 ∩ 𝑌) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑧 ∩ 𝑌))) |
| 50 | | elin 3967 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑧 ∩ 𝑌) ↔ (𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑌)) |
| 51 | 50 | rbaib 538 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑌 → (𝑥 ∈ (𝑧 ∩ 𝑌) ↔ 𝑥 ∈ 𝑧)) |
| 52 | 51 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝑧 ∩ 𝑌) ↔ 𝑥 ∈ 𝑧)) |
| 53 | 49, 52 | sylan9bbr 510 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑧 ∩ 𝑌)) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧)) |
| 54 | | eleq1 2829 |
. . . . . . . . 9
⊢ (𝑦 = (𝑧 ∩ 𝑌) → (𝑦 ∈ (𝐹 ↾t 𝑌) ↔ (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
| 55 | 54 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑧 ∩ 𝑌)) → (𝑦 ∈ (𝐹 ↾t 𝑌) ↔ (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌))) |
| 56 | 53, 55 | imbi12d 344 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) ∧ 𝑦 = (𝑧 ∩ 𝑌)) → ((𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
| 57 | 45, 48, 56 | ralxfr2d 5410 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌)) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → (𝑧 ∩ 𝑌) ∈ (𝐹 ↾t 𝑌)))) |
| 58 | 37, 42, 57 | 3bitr4d 311 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌)))) |
| 59 | 58 | pm5.32da 579 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥 ∈ 𝑌 ∧ ∀𝑦 ∈ (𝐽 ↾t 𝑌)(𝑥 ∈ 𝑦 → 𝑦 ∈ (𝐹 ↾t 𝑌))))) |
| 60 | 16, 59 | bitr4d 282 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)))) |
| 61 | | ancom 460 |
. . . 4
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ 𝑌)) |
| 62 | | elin 3967 |
. . . 4
⊢ (𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ 𝑌)) |
| 63 | 61, 62 | bitr4i 278 |
. . 3
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌)) |
| 64 | 60, 63 | bitrdi 287 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → (𝑥 ∈ ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fLim 𝐹) ∩ 𝑌))) |
| 65 | 64 | eqrdv 2735 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌)) |