| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extoimad | Structured version Visualization version GIF version | ||
| Description: If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| extoimad.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| extoimad.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) |
| Ref | Expression |
|---|---|
| extoimad | ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extoimad.2 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) | |
| 2 | extoimad.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 3 | 2 | ffvelcdmda 7059 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
| 4 | 3 | recnd 11209 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℂ) |
| 5 | 4 | abscld 15412 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) ∈ ℝ) |
| 6 | imaco 6227 | . . . . . 6 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))) |
| 8 | 7 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ 𝑥 ∈ (abs “ (𝐹 “ ℝ)))) |
| 9 | absf 15311 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
| 10 | 9 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
| 11 | ax-resscn 11132 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
| 12 | 11 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 13 | 10, 12 | fssresd 6730 | . . . . . . . . 9 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
| 14 | 2, 13 | fco2d 44158 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 15 | 14 | ffnd 6692 | . . . . . . 7 ⊢ (𝜑 → (abs ∘ 𝐹) Fn ℝ) |
| 16 | ssidd 3973 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
| 17 | 15, 16 | fvelimabd 6937 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥)) |
| 18 | eqcom 2737 | . . . . . . . 8 ⊢ (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦)) | |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 20 | 19 | rexbidv 3158 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 21 | 17, 20 | bitrd 279 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 22 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
| 23 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 24 | 22, 23 | fvco3d 6964 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
| 25 | 24 | eqcomd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) = ((abs ∘ 𝐹)‘𝑦)) |
| 26 | 25 | eqeq2d 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 = (abs‘(𝐹‘𝑦)) ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 27 | 26 | rexbidva 3156 | . . . . 5 ⊢ (𝜑 → (∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 28 | 21, 27 | bitr4d 282 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
| 29 | 8, 28 | bitr3d 281 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (abs “ (𝐹 “ ℝ)) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
| 30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → 𝑥 = (abs‘(𝐹‘𝑦))) | |
| 31 | 30 | breq1d 5120 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → (𝑥 ≤ 𝐶 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
| 32 | 5, 29, 31 | ralxfr2d 5368 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶 ↔ ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
| 33 | 1, 32 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 ℂcc 11073 ℝcr 11074 ≤ cle 11216 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: imo72b2lem0 44161 imo72b2lem2 44163 imo72b2lem1 44165 imo72b2 44168 |
| Copyright terms: Public domain | W3C validator |