Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extoimad Structured version   Visualization version   GIF version

Theorem extoimad 44160
Description: If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
extoimad.1 (𝜑𝐹:ℝ⟶ℝ)
extoimad.2 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 𝐶)
Assertion
Ref Expression
extoimad (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝐶)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦

Proof of Theorem extoimad
StepHypRef Expression
1 extoimad.2 . 2 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 𝐶)
2 extoimad.1 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
32ffvelcdmda 7059 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
43recnd 11209 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
54abscld 15412 . . 3 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝐹𝑦)) ∈ ℝ)
6 imaco 6227 . . . . . 6 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
76a1i 11 . . . . 5 (𝜑 → ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)))
87eleq2d 2815 . . . 4 (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ 𝑥 ∈ (abs “ (𝐹 “ ℝ))))
9 absf 15311 . . . . . . . . . . 11 abs:ℂ⟶ℝ
109a1i 11 . . . . . . . . . 10 (𝜑 → abs:ℂ⟶ℝ)
11 ax-resscn 11132 . . . . . . . . . . 11 ℝ ⊆ ℂ
1211a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
1310, 12fssresd 6730 . . . . . . . . 9 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
142, 13fco2d 44158 . . . . . . . 8 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
1514ffnd 6692 . . . . . . 7 (𝜑 → (abs ∘ 𝐹) Fn ℝ)
16 ssidd 3973 . . . . . . 7 (𝜑 → ℝ ⊆ ℝ)
1715, 16fvelimabd 6937 . . . . . 6 (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥))
18 eqcom 2737 . . . . . . . 8 (((abs ∘ 𝐹)‘𝑦) = 𝑥𝑥 = ((abs ∘ 𝐹)‘𝑦))
1918a1i 11 . . . . . . 7 (𝜑 → (((abs ∘ 𝐹)‘𝑦) = 𝑥𝑥 = ((abs ∘ 𝐹)‘𝑦)))
2019rexbidv 3158 . . . . . 6 (𝜑 → (∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦)))
2117, 20bitrd 279 . . . . 5 (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦)))
222adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
23 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
2422, 23fvco3d 6964 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
2524eqcomd 2736 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝐹𝑦)) = ((abs ∘ 𝐹)‘𝑦))
2625eqeq2d 2741 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥 = (abs‘(𝐹𝑦)) ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦)))
2726rexbidva 3156 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹𝑦)) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦)))
2821, 27bitr4d 282 . . . 4 (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹𝑦))))
298, 28bitr3d 281 . . 3 (𝜑 → (𝑥 ∈ (abs “ (𝐹 “ ℝ)) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹𝑦))))
30 simpr 484 . . . 4 ((𝜑𝑥 = (abs‘(𝐹𝑦))) → 𝑥 = (abs‘(𝐹𝑦)))
3130breq1d 5120 . . 3 ((𝜑𝑥 = (abs‘(𝐹𝑦))) → (𝑥𝐶 ↔ (abs‘(𝐹𝑦)) ≤ 𝐶))
325, 29, 31ralxfr2d 5368 . 2 (𝜑 → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝐶 ↔ ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 𝐶))
331, 32mpbird 257 1 (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cima 5644  ccom 5645  wf 6510  cfv 6514  cc 11073  cr 11074  cle 11216  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  imo72b2lem0  44161  imo72b2lem2  44163  imo72b2lem1  44165  imo72b2  44168
  Copyright terms: Public domain W3C validator