| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extoimad | Structured version Visualization version GIF version | ||
| Description: If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| extoimad.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| extoimad.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) |
| Ref | Expression |
|---|---|
| extoimad | ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extoimad.2 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) | |
| 2 | extoimad.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 3 | 2 | ffvelcdmda 7084 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
| 4 | 3 | recnd 11271 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℂ) |
| 5 | 4 | abscld 15457 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) ∈ ℝ) |
| 6 | imaco 6251 | . . . . . 6 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))) |
| 8 | 7 | eleq2d 2819 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ 𝑥 ∈ (abs “ (𝐹 “ ℝ)))) |
| 9 | absf 15358 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
| 10 | 9 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
| 11 | ax-resscn 11194 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
| 12 | 11 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 13 | 10, 12 | fssresd 6755 | . . . . . . . . 9 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
| 14 | 2, 13 | fco2d 44137 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 15 | 14 | ffnd 6717 | . . . . . . 7 ⊢ (𝜑 → (abs ∘ 𝐹) Fn ℝ) |
| 16 | ssidd 3987 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
| 17 | 15, 16 | fvelimabd 6962 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥)) |
| 18 | eqcom 2741 | . . . . . . . 8 ⊢ (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦)) | |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 20 | 19 | rexbidv 3166 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 21 | 17, 20 | bitrd 279 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 22 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
| 23 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 24 | 22, 23 | fvco3d 6989 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
| 25 | 24 | eqcomd 2740 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) = ((abs ∘ 𝐹)‘𝑦)) |
| 26 | 25 | eqeq2d 2745 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 = (abs‘(𝐹‘𝑦)) ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 27 | 26 | rexbidva 3164 | . . . . 5 ⊢ (𝜑 → (∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 28 | 21, 27 | bitr4d 282 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
| 29 | 8, 28 | bitr3d 281 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (abs “ (𝐹 “ ℝ)) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
| 30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → 𝑥 = (abs‘(𝐹‘𝑦))) | |
| 31 | 30 | breq1d 5133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → (𝑥 ≤ 𝐶 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
| 32 | 5, 29, 31 | ralxfr2d 5390 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶 ↔ ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
| 33 | 1, 32 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 class class class wbr 5123 “ cima 5668 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 ℂcc 11135 ℝcr 11136 ≤ cle 11278 abscabs 15255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 |
| This theorem is referenced by: imo72b2lem0 44140 imo72b2lem2 44142 imo72b2lem1 44144 imo72b2 44147 |
| Copyright terms: Public domain | W3C validator |