Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > extoimad | Structured version Visualization version GIF version |
Description: If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
extoimad.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
extoimad.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) |
Ref | Expression |
---|---|
extoimad | ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extoimad.2 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) | |
2 | extoimad.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
3 | 2 | ffvelcdmda 7000 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
4 | 3 | recnd 11082 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℂ) |
5 | 4 | abscld 15224 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) ∈ ℝ) |
6 | imaco 6176 | . . . . . 6 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))) |
8 | 7 | eleq2d 2822 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ 𝑥 ∈ (abs “ (𝐹 “ ℝ)))) |
9 | absf 15125 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
10 | 9 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
11 | ax-resscn 11007 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
12 | 11 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℝ ⊆ ℂ) |
13 | 10, 12 | fssresd 6678 | . . . . . . . . 9 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
14 | 2, 13 | fco2d 42012 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
15 | 14 | ffnd 6638 | . . . . . . 7 ⊢ (𝜑 → (abs ∘ 𝐹) Fn ℝ) |
16 | ssidd 3953 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
17 | 15, 16 | fvelimabd 6881 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥)) |
18 | eqcom 2743 | . . . . . . . 8 ⊢ (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦)) | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
20 | 19 | rexbidv 3171 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
21 | 17, 20 | bitrd 278 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
22 | 2 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
23 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
24 | 22, 23 | fvco3d 6907 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
25 | 24 | eqcomd 2742 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) = ((abs ∘ 𝐹)‘𝑦)) |
26 | 25 | eqeq2d 2747 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 = (abs‘(𝐹‘𝑦)) ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
27 | 26 | rexbidva 3169 | . . . . 5 ⊢ (𝜑 → (∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
28 | 21, 27 | bitr4d 281 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
29 | 8, 28 | bitr3d 280 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (abs “ (𝐹 “ ℝ)) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
30 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → 𝑥 = (abs‘(𝐹‘𝑦))) | |
31 | 30 | breq1d 5096 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → (𝑥 ≤ 𝐶 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
32 | 5, 29, 31 | ralxfr2d 5347 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶 ↔ ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
33 | 1, 32 | mpbird 256 | 1 ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ⊆ wss 3896 class class class wbr 5086 “ cima 5610 ∘ ccom 5611 ⟶wf 6461 ‘cfv 6465 ℂcc 10948 ℝcr 10949 ≤ cle 11089 abscabs 15021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-sup 9277 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-rp 12810 df-seq 13801 df-exp 13862 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 |
This theorem is referenced by: imo72b2lem0 42015 imo72b2lem2 42017 imo72b2lem1 42019 imo72b2 42022 |
Copyright terms: Public domain | W3C validator |