| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extoimad | Structured version Visualization version GIF version | ||
| Description: If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| extoimad.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| extoimad.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) |
| Ref | Expression |
|---|---|
| extoimad | ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extoimad.2 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) | |
| 2 | extoimad.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 3 | 2 | ffvelcdmda 7012 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
| 4 | 3 | recnd 11132 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℂ) |
| 5 | 4 | abscld 15338 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) ∈ ℝ) |
| 6 | imaco 6195 | . . . . . 6 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))) |
| 8 | 7 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ 𝑥 ∈ (abs “ (𝐹 “ ℝ)))) |
| 9 | absf 15237 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
| 10 | 9 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
| 11 | ax-resscn 11055 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
| 12 | 11 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 13 | 10, 12 | fssresd 6686 | . . . . . . . . 9 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
| 14 | 2, 13 | fco2d 44174 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 15 | 14 | ffnd 6648 | . . . . . . 7 ⊢ (𝜑 → (abs ∘ 𝐹) Fn ℝ) |
| 16 | ssidd 3956 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
| 17 | 15, 16 | fvelimabd 6890 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥)) |
| 18 | eqcom 2737 | . . . . . . . 8 ⊢ (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦)) | |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 20 | 19 | rexbidv 3154 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 21 | 17, 20 | bitrd 279 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 22 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
| 23 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 24 | 22, 23 | fvco3d 6917 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
| 25 | 24 | eqcomd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) = ((abs ∘ 𝐹)‘𝑦)) |
| 26 | 25 | eqeq2d 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 = (abs‘(𝐹‘𝑦)) ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 27 | 26 | rexbidva 3152 | . . . . 5 ⊢ (𝜑 → (∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
| 28 | 21, 27 | bitr4d 282 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
| 29 | 8, 28 | bitr3d 281 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (abs “ (𝐹 “ ℝ)) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
| 30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → 𝑥 = (abs‘(𝐹‘𝑦))) | |
| 31 | 30 | breq1d 5099 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → (𝑥 ≤ 𝐶 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
| 32 | 5, 29, 31 | ralxfr2d 5346 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶 ↔ ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
| 33 | 1, 32 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 ⊆ wss 3900 class class class wbr 5089 “ cima 5617 ∘ ccom 5618 ⟶wf 6473 ‘cfv 6477 ℂcc 10996 ℝcr 10997 ≤ cle 11139 abscabs 15133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 |
| This theorem is referenced by: imo72b2lem0 44177 imo72b2lem2 44179 imo72b2lem1 44181 imo72b2 44184 |
| Copyright terms: Public domain | W3C validator |