Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > extoimad | Structured version Visualization version GIF version |
Description: If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
extoimad.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
extoimad.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) |
Ref | Expression |
---|---|
extoimad | ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extoimad.2 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) | |
2 | extoimad.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
3 | 2 | ffvelrnda 6943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
4 | 3 | recnd 10934 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℂ) |
5 | 4 | abscld 15076 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) ∈ ℝ) |
6 | imaco 6144 | . . . . . 6 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))) |
8 | 7 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ 𝑥 ∈ (abs “ (𝐹 “ ℝ)))) |
9 | absf 14977 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
10 | 9 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
11 | ax-resscn 10859 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
12 | 11 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℝ ⊆ ℂ) |
13 | 10, 12 | fssresd 6625 | . . . . . . . . 9 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
14 | 2, 13 | fco2d 41662 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
15 | 14 | ffnd 6585 | . . . . . . 7 ⊢ (𝜑 → (abs ∘ 𝐹) Fn ℝ) |
16 | ssidd 3940 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℝ) | |
17 | 15, 16 | fvelimabd 6824 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥)) |
18 | eqcom 2745 | . . . . . . . 8 ⊢ (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦)) | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
20 | 19 | rexbidv 3225 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ((abs ∘ 𝐹)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
21 | 17, 20 | bitrd 278 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
22 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
23 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
24 | 22, 23 | fvco3d 6850 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
25 | 24 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐹‘𝑦)) = ((abs ∘ 𝐹)‘𝑦)) |
26 | 25 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 = (abs‘(𝐹‘𝑦)) ↔ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
27 | 26 | rexbidva 3224 | . . . . 5 ⊢ (𝜑 → (∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)) ↔ ∃𝑦 ∈ ℝ 𝑥 = ((abs ∘ 𝐹)‘𝑦))) |
28 | 21, 27 | bitr4d 281 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((abs ∘ 𝐹) “ ℝ) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
29 | 8, 28 | bitr3d 280 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (abs “ (𝐹 “ ℝ)) ↔ ∃𝑦 ∈ ℝ 𝑥 = (abs‘(𝐹‘𝑦)))) |
30 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → 𝑥 = (abs‘(𝐹‘𝑦))) | |
31 | 30 | breq1d 5080 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (abs‘(𝐹‘𝑦))) → (𝑥 ≤ 𝐶 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
32 | 5, 29, 31 | ralxfr2d 5328 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶 ↔ ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶)) |
33 | 1, 32 | mpbird 256 | 1 ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 “ cima 5583 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 ℂcc 10800 ℝcr 10801 ≤ cle 10941 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: imo72b2lem0 41665 imo72b2lem2 41667 imo72b2lem1 41669 imo72b2 41672 |
Copyright terms: Public domain | W3C validator |