MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcnvexb Structured version   Visualization version   GIF version

Theorem relcnvexb 7747
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
Assertion
Ref Expression
relcnvexb (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))

Proof of Theorem relcnvexb
StepHypRef Expression
1 cnvexg 7745 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
2 dfrel2 6081 . . 3 (Rel 𝑅𝑅 = 𝑅)
3 cnvexg 7745 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
4 eleq1 2826 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
53, 4syl5ib 243 . . 3 (𝑅 = 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
62, 5sylbi 216 . 2 (Rel 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
71, 6impbid2 225 1 (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  ccnv 5579  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  f1oexrnex  7748
  Copyright terms: Public domain W3C validator