MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcnvexb Structured version   Visualization version   GIF version

Theorem relcnvexb 7921
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
Assertion
Ref Expression
relcnvexb (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))

Proof of Theorem relcnvexb
StepHypRef Expression
1 cnvexg 7919 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
2 dfrel2 6188 . . 3 (Rel 𝑅𝑅 = 𝑅)
3 cnvexg 7919 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
4 eleq1 2820 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
53, 4imbitrid 243 . . 3 (𝑅 = 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
62, 5sylbi 216 . 2 (Rel 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
71, 6impbid2 225 1 (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  Vcvv 3473  ccnv 5675  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  f1oexrnex  7922
  Copyright terms: Public domain W3C validator