MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcnvexb Structured version   Visualization version   GIF version

Theorem relcnvexb 7865
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
Assertion
Ref Expression
relcnvexb (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))

Proof of Theorem relcnvexb
StepHypRef Expression
1 cnvexg 7863 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
2 dfrel2 6144 . . 3 (Rel 𝑅𝑅 = 𝑅)
3 cnvexg 7863 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
4 eleq1 2821 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
53, 4imbitrid 244 . . 3 (𝑅 = 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
62, 5sylbi 217 . 2 (Rel 𝑅 → (𝑅 ∈ V → 𝑅 ∈ V))
71, 6impbid2 226 1 (Rel 𝑅 → (𝑅 ∈ V ↔ 𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  Vcvv 3438  ccnv 5620  Rel wrel 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632
This theorem is referenced by:  f1oexrnex  7866
  Copyright terms: Public domain W3C validator