Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relcnvexb | Structured version Visualization version GIF version |
Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
Ref | Expression |
---|---|
relcnvexb | ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7640 | . 2 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
2 | dfrel2 6023 | . . 3 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
3 | cnvexg 7640 | . . . 4 ⊢ (◡𝑅 ∈ V → ◡◡𝑅 ∈ V) | |
4 | eleq1 2839 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ V ↔ 𝑅 ∈ V)) | |
5 | 3, 4 | syl5ib 247 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
6 | 2, 5 | sylbi 220 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
7 | 1, 6 | impbid2 229 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ◡ccnv 5527 Rel wrel 5533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-xp 5534 df-rel 5535 df-cnv 5536 df-dm 5538 df-rn 5539 |
This theorem is referenced by: f1oexrnex 7643 |
Copyright terms: Public domain | W3C validator |