| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnvexb | Structured version Visualization version GIF version | ||
| Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
| Ref | Expression |
|---|---|
| relcnvexb | ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvexg 7849 | . 2 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
| 2 | dfrel2 6133 | . . 3 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
| 3 | cnvexg 7849 | . . . 4 ⊢ (◡𝑅 ∈ V → ◡◡𝑅 ∈ V) | |
| 4 | eleq1 2817 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ V ↔ 𝑅 ∈ V)) | |
| 5 | 3, 4 | imbitrid 244 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
| 6 | 2, 5 | sylbi 217 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ V → 𝑅 ∈ V)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ◡ccnv 5613 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: f1oexrnex 7852 |
| Copyright terms: Public domain | W3C validator |