| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cnvex | ⊢ ◡𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvexg 7925 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ◡ccnv 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: f1oexbi 7929 funcnvuni 7933 cnvf1o 8115 brtpos2 8236 pw2f1o 9096 sbthlem10 9111 fodomr 9147 ssenen 9170 cnfcomlem 9718 infxpenlem 10032 enfin2i 10340 fin1a2lem7 10425 fpwwe 10665 canthwelem 10669 axdc4uzlem 14006 hashfacen 14477 catcisolem 18128 oduleval 18306 gicsubgen 19267 isunit 20338 znle 21502 evpmss 21551 psgnevpmb 21552 ptbasfi 23524 nghmfval 24666 fta1glem2 26131 fta1blem 26133 lgsqrlem4 27317 tocycf 33133 evpmval 33161 altgnsg 33165 elrgspnsubrunlem2 33248 elrspunidl 33448 1arithidom 33557 irngval 33731 locfinreflem 33876 zarcmplem 33917 qqhval 34008 mbfmcnt 34305 derangenlem 35198 mthmval 35602 colinearex 36083 fvline 36167 ptrest 37648 poimir 37682 tendoi2 40819 dihopelvalcpre 41272 pw2f1ocnv 43036 cnvintabd 43602 clcnvlem 43622 frege133 43995 binomcxplemnotnn0 44355 fzisoeu 45309 gricushgr 47910 uspgrlim 47984 tposideq 48843 |
| Copyright terms: Public domain | W3C validator |