![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
Ref | Expression |
---|---|
cnvex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cnvex | ⊢ ◡𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | cnvexg 7947 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ◡ccnv 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: f1oexbi 7951 funcnvuni 7955 cnvf1o 8135 brtpos2 8256 pw2f1o 9116 sbthlem10 9131 fodomr 9167 ssenen 9190 cnfcomlem 9737 infxpenlem 10051 enfin2i 10359 fin1a2lem7 10444 fpwwe 10684 canthwelem 10688 axdc4uzlem 14021 hashfacen 14490 catcisolem 18164 oduleval 18346 gicsubgen 19310 isunit 20390 znle 21569 evpmss 21622 psgnevpmb 21623 ptbasfi 23605 nghmfval 24759 fta1glem2 26223 fta1blem 26225 lgsqrlem4 27408 tocycf 33120 evpmval 33148 altgnsg 33152 elrspunidl 33436 1arithidom 33545 irngval 33700 locfinreflem 33801 zarcmplem 33842 qqhval 33935 mbfmcnt 34250 derangenlem 35156 mthmval 35560 colinearex 36042 fvline 36126 ptrest 37606 poimir 37640 tendoi2 40778 dihopelvalcpre 41231 pw2f1ocnv 43026 cnvintabd 43593 clcnvlem 43613 frege133 43986 binomcxplemnotnn0 44352 fzisoeu 45251 gricushgr 47824 uspgrlim 47895 |
Copyright terms: Public domain | W3C validator |