| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cnvex | ⊢ ◡𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvexg 7929 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3464 ◡ccnv 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 |
| This theorem is referenced by: f1oexbi 7933 funcnvuni 7937 cnvf1o 8119 brtpos2 8240 pw2f1o 9100 sbthlem10 9115 fodomr 9151 ssenen 9174 cnfcomlem 9722 infxpenlem 10036 enfin2i 10344 fin1a2lem7 10429 fpwwe 10669 canthwelem 10673 axdc4uzlem 14007 hashfacen 14476 catcisolem 18131 oduleval 18309 gicsubgen 19271 isunit 20346 znle 21518 evpmss 21571 psgnevpmb 21572 ptbasfi 23554 nghmfval 24698 fta1glem2 26163 fta1blem 26165 lgsqrlem4 27348 tocycf 33083 evpmval 33111 altgnsg 33115 elrgspnsubrunlem2 33198 elrspunidl 33397 1arithidom 33506 irngval 33676 locfinreflem 33780 zarcmplem 33821 qqhval 33914 mbfmcnt 34211 derangenlem 35117 mthmval 35521 colinearex 36002 fvline 36086 ptrest 37567 poimir 37601 tendoi2 40738 dihopelvalcpre 41191 pw2f1ocnv 42994 cnvintabd 43561 clcnvlem 43581 frege133 43954 binomcxplemnotnn0 44320 fzisoeu 45257 gricushgr 47832 uspgrlim 47905 tposideq 48735 |
| Copyright terms: Public domain | W3C validator |