Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
Ref | Expression |
---|---|
cnvex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cnvex | ⊢ ◡𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | cnvexg 7771 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: f1oexbi 7775 funcnvuni 7778 cnvf1o 7951 brtpos2 8048 pw2f1o 8864 sbthlem10 8879 fodomr 8915 ssenen 8938 cnfcomlem 9457 infxpenlem 9769 enfin2i 10077 fin1a2lem7 10162 fpwwe 10402 canthwelem 10406 axdc4uzlem 13703 hashfacen 14166 hashfacenOLD 14167 catcisolem 17825 oduleval 18007 gicsubgen 18894 isunit 19899 znle 20740 evpmss 20791 psgnevpmb 20792 ptbasfi 22732 nghmfval 23886 fta1glem2 25331 fta1blem 25333 lgsqrlem4 26497 tocycf 31384 evpmval 31412 altgnsg 31416 elrspunidl 31606 locfinreflem 31790 zarcmplem 31831 qqhval 31924 mbfmcnt 32235 derangenlem 33133 mthmval 33537 colinearex 34362 fvline 34446 ptrest 35776 poimir 35810 tendoi2 38809 dihopelvalcpre 39262 pw2f1ocnv 40859 cnvintabd 41211 clcnvlem 41231 frege133 41604 binomcxplemnotnn0 41974 fzisoeu 42839 isomushgr 45278 isomgrsym 45288 |
Copyright terms: Public domain | W3C validator |