| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cnvex | ⊢ ◡𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvexg 7864 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ◡ccnv 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: f1oexbi 7868 funcnvuni 7872 cnvf1o 8051 brtpos2 8172 pw2f1o 9006 sbthlem10 9020 fodomr 9052 ssenen 9075 cnfcomlem 9614 infxpenlem 9926 enfin2i 10234 fin1a2lem7 10319 fpwwe 10559 canthwelem 10563 axdc4uzlem 13908 hashfacen 14379 catcisolem 18035 oduleval 18213 gicsubgen 19176 isunit 20276 znle 21461 evpmss 21511 psgnevpmb 21512 ptbasfi 23484 nghmfval 24626 fta1glem2 26090 fta1blem 26092 lgsqrlem4 27276 tocycf 33072 evpmval 33100 altgnsg 33104 elrgspnsubrunlem2 33201 elrspunidl 33378 1arithidom 33487 irngval 33659 locfinreflem 33809 zarcmplem 33850 qqhval 33941 mbfmcnt 34238 derangenlem 35146 mthmval 35550 colinearex 36036 fvline 36120 ptrest 37601 poimir 37635 tendoi2 40777 dihopelvalcpre 41230 pw2f1ocnv 43013 cnvintabd 43579 clcnvlem 43599 frege133 43972 binomcxplemnotnn0 44332 fzisoeu 45285 gricushgr 47905 uspgrlim 47980 tposideq 48876 |
| Copyright terms: Public domain | W3C validator |