Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
Ref | Expression |
---|---|
cnvex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cnvex | ⊢ ◡𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | cnvexg 7745 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: f1oexbi 7749 funcnvuni 7752 cnvf1o 7922 brtpos2 8019 pw2f1o 8817 sbthlem10 8832 fodomr 8864 ssenen 8887 cnfcomlem 9387 infxpenlem 9700 enfin2i 10008 fin1a2lem7 10093 fpwwe 10333 canthwelem 10337 axdc4uzlem 13631 hashfacen 14094 hashfacenOLD 14095 catcisolem 17741 oduleval 17923 gicsubgen 18809 isunit 19814 znle 20652 evpmss 20703 psgnevpmb 20704 ptbasfi 22640 nghmfval 23792 fta1glem2 25236 fta1blem 25238 lgsqrlem4 26402 tocycf 31286 evpmval 31314 altgnsg 31318 elrspunidl 31508 locfinreflem 31692 zarcmplem 31733 qqhval 31824 mbfmcnt 32135 derangenlem 33033 mthmval 33437 colinearex 34289 fvline 34373 ptrest 35703 poimir 35737 tendoi2 38736 dihopelvalcpre 39189 pw2f1ocnv 40775 cnvintabd 41100 clcnvlem 41120 frege133 41493 binomcxplemnotnn0 41863 fzisoeu 42729 isomushgr 45166 isomgrsym 45176 |
Copyright terms: Public domain | W3C validator |