| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cnvex | ⊢ ◡𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvexg 7854 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ◡ccnv 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: f1oexbi 7858 funcnvuni 7862 cnvf1o 8041 brtpos2 8162 pw2f1o 8995 sbthlem10 9009 fodomr 9041 ssenen 9064 cnfcomlem 9589 infxpenlem 9904 enfin2i 10212 fin1a2lem7 10297 fpwwe 10537 canthwelem 10541 axdc4uzlem 13890 hashfacen 14361 catcisolem 18017 oduleval 18195 gicsubgen 19192 isunit 20292 znle 21474 evpmss 21524 psgnevpmb 21525 ptbasfi 23497 nghmfval 24638 fta1glem2 26102 fta1blem 26104 lgsqrlem4 27288 tocycf 33084 evpmval 33112 altgnsg 33116 elrgspnsubrunlem2 33213 elrspunidl 33391 1arithidom 33500 irngval 33696 locfinreflem 33851 zarcmplem 33892 qqhval 33983 mbfmcnt 34279 derangenlem 35213 mthmval 35617 colinearex 36100 fvline 36184 ptrest 37665 poimir 37699 tendoi2 40840 dihopelvalcpre 41293 pw2f1ocnv 43076 cnvintabd 43642 clcnvlem 43662 frege133 44035 binomcxplemnotnn0 44395 fzisoeu 45347 gricushgr 47954 uspgrlim 48029 tposideq 48925 |
| Copyright terms: Public domain | W3C validator |