![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
Ref | Expression |
---|---|
cnvex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cnvex | ⊢ ◡𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | cnvexg 7964 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: f1oexbi 7968 funcnvuni 7972 cnvf1o 8152 brtpos2 8273 pw2f1o 9143 sbthlem10 9158 fodomr 9194 ssenen 9217 cnfcomlem 9768 infxpenlem 10082 enfin2i 10390 fin1a2lem7 10475 fpwwe 10715 canthwelem 10719 axdc4uzlem 14034 hashfacen 14503 catcisolem 18177 oduleval 18359 gicsubgen 19319 isunit 20399 znle 21574 evpmss 21627 psgnevpmb 21628 ptbasfi 23610 nghmfval 24764 fta1glem2 26228 fta1blem 26230 lgsqrlem4 27411 tocycf 33110 evpmval 33138 altgnsg 33142 elrspunidl 33421 1arithidom 33530 irngval 33685 locfinreflem 33786 zarcmplem 33827 qqhval 33920 mbfmcnt 34233 derangenlem 35139 mthmval 35543 colinearex 36024 fvline 36108 ptrest 37579 poimir 37613 tendoi2 40752 dihopelvalcpre 41205 pw2f1ocnv 42994 cnvintabd 43565 clcnvlem 43585 frege133 43958 binomcxplemnotnn0 44325 fzisoeu 45215 gricushgr 47770 uspgrlim 47816 |
Copyright terms: Public domain | W3C validator |