| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cnvex | ⊢ ◡𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvexg 7900 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: f1oexbi 7904 funcnvuni 7908 cnvf1o 8090 brtpos2 8211 pw2f1o 9046 sbthlem10 9060 fodomr 9092 ssenen 9115 cnfcomlem 9652 infxpenlem 9966 enfin2i 10274 fin1a2lem7 10359 fpwwe 10599 canthwelem 10603 axdc4uzlem 13948 hashfacen 14419 catcisolem 18072 oduleval 18250 gicsubgen 19211 isunit 20282 znle 21446 evpmss 21495 psgnevpmb 21496 ptbasfi 23468 nghmfval 24610 fta1glem2 26074 fta1blem 26076 lgsqrlem4 27260 tocycf 33074 evpmval 33102 altgnsg 33106 elrgspnsubrunlem2 33199 elrspunidl 33399 1arithidom 33508 irngval 33680 locfinreflem 33830 zarcmplem 33871 qqhval 33962 mbfmcnt 34259 derangenlem 35158 mthmval 35562 colinearex 36048 fvline 36132 ptrest 37613 poimir 37647 tendoi2 40789 dihopelvalcpre 41242 pw2f1ocnv 43026 cnvintabd 43592 clcnvlem 43612 frege133 43985 binomcxplemnotnn0 44345 fzisoeu 45298 gricushgr 47917 uspgrlim 47991 tposideq 48876 |
| Copyright terms: Public domain | W3C validator |