| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvex | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cnvex | ⊢ ◡𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvexg 7862 | . 2 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ◡ccnv 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: f1oexbi 7866 funcnvuni 7870 cnvf1o 8049 brtpos2 8170 pw2f1o 9004 sbthlem10 9018 fodomr 9050 ssenen 9073 cnfcomlem 9598 infxpenlem 9913 enfin2i 10221 fin1a2lem7 10306 fpwwe 10546 canthwelem 10550 axdc4uzlem 13894 hashfacen 14365 catcisolem 18021 oduleval 18199 gicsubgen 19195 isunit 20295 znle 21477 evpmss 21527 psgnevpmb 21528 ptbasfi 23499 nghmfval 24640 fta1glem2 26104 fta1blem 26106 lgsqrlem4 27290 tocycf 33095 evpmval 33123 altgnsg 33127 elrgspnsubrunlem2 33224 elrspunidl 33402 1arithidom 33511 irngval 33721 locfinreflem 33876 zarcmplem 33917 qqhval 34008 mbfmcnt 34304 derangenlem 35238 mthmval 35642 colinearex 36127 fvline 36211 ptrest 37682 poimir 37716 tendoi2 40917 dihopelvalcpre 41370 pw2f1ocnv 43157 cnvintabd 43723 clcnvlem 43743 frege133 44116 binomcxplemnotnn0 44476 fzisoeu 45428 gricushgr 48044 uspgrlim 48119 tposideq 49015 |
| Copyright terms: Public domain | W3C validator |