| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dsmmval2 | Structured version Visualization version GIF version | ||
| Description: Self-referential definition of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| dsmmval2.b | ⊢ 𝐵 = (Base‘(𝑆 ⊕m 𝑅)) |
| Ref | Expression |
|---|---|
| dsmmval2 | ⊢ (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4029 | . . . . . 6 ⊢ {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) | |
| 2 | eqid 2733 | . . . . . . 7 ⊢ ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅)) | |
| 4 | 2, 3 | ressbas2 17151 | . . . . . 6 ⊢ ({𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}))) |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin})) |
| 6 | 5 | oveq2i 7363 | . . . 4 ⊢ ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}))) |
| 7 | eqid 2733 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} | |
| 8 | 7 | dsmmval 21673 | . . . 4 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin})) |
| 9 | 8 | fveq2d 6832 | . . . . 5 ⊢ (𝑅 ∈ V → (Base‘(𝑆 ⊕m 𝑅)) = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}))) |
| 10 | 9 | oveq2d 7368 | . . . 4 ⊢ (𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin})))) |
| 11 | 6, 8, 10 | 3eqtr4a 2794 | . . 3 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅)))) |
| 12 | ress0 17156 | . . . . 5 ⊢ (∅ ↾s (Base‘(𝑆 ⊕m 𝑅))) = ∅ | |
| 13 | 12 | eqcomi 2742 | . . . 4 ⊢ ∅ = (∅ ↾s (Base‘(𝑆 ⊕m 𝑅))) |
| 14 | reldmdsmm 21672 | . . . . 5 ⊢ Rel dom ⊕m | |
| 15 | 14 | ovprc2 7392 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ∅) |
| 16 | reldmprds 17354 | . . . . . 6 ⊢ Rel dom Xs | |
| 17 | 16 | ovprc2 7392 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑆Xs𝑅) = ∅) |
| 18 | 17 | oveq1d 7367 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) = (∅ ↾s (Base‘(𝑆 ⊕m 𝑅)))) |
| 19 | 13, 15, 18 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅)))) |
| 20 | 11, 19 | pm2.61i 182 | . 2 ⊢ (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) |
| 21 | dsmmval2.b | . . 3 ⊢ 𝐵 = (Base‘(𝑆 ⊕m 𝑅)) | |
| 22 | 21 | oveq2i 7363 | . 2 ⊢ ((𝑆Xs𝑅) ↾s 𝐵) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) |
| 23 | 20, 22 | eqtr4i 2759 | 1 ⊢ (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 Basecbs 17122 ↾s cress 17143 0gc0g 17345 Xscprds 17351 ⊕m cdsmm 21670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-prds 17353 df-dsmm 21671 |
| This theorem is referenced by: dsmmfi 21677 dsmmlmod 21684 frlmpws 21689 |
| Copyright terms: Public domain | W3C validator |