MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmval2 Structured version   Visualization version   GIF version

Theorem dsmmval2 20450
Description: Self-referential definition of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
dsmmval2.b 𝐵 = (Base‘(𝑆m 𝑅))
Assertion
Ref Expression
dsmmval2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)

Proof of Theorem dsmmval2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3914 . . . . . 6 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅))
2 eqid 2825 . . . . . . 7 ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
3 eqid 2825 . . . . . . 7 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
42, 3ressbas2 16301 . . . . . 6 ({𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})))
51, 4ax-mp 5 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}))
65oveq2i 6921 . . . 4 ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})))
7 eqid 2825 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
87dsmmval 20448 . . . 4 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}))
98fveq2d 6441 . . . . 5 (𝑅 ∈ V → (Base‘(𝑆m 𝑅)) = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})))
109oveq2d 6926 . . . 4 (𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}))))
116, 8, 103eqtr4a 2887 . . 3 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))))
12 ress0 16304 . . . . 5 (∅ ↾s (Base‘(𝑆m 𝑅))) = ∅
1312eqcomi 2834 . . . 4 ∅ = (∅ ↾s (Base‘(𝑆m 𝑅)))
14 reldmdsmm 20447 . . . . 5 Rel dom ⊕m
1514ovprc2 6949 . . . 4 𝑅 ∈ V → (𝑆m 𝑅) = ∅)
16 reldmprds 16469 . . . . . 6 Rel dom Xs
1716ovprc2 6949 . . . . 5 𝑅 ∈ V → (𝑆Xs𝑅) = ∅)
1817oveq1d 6925 . . . 4 𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = (∅ ↾s (Base‘(𝑆m 𝑅))))
1913, 15, 183eqtr4a 2887 . . 3 𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))))
2011, 19pm2.61i 177 . 2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
21 dsmmval2.b . . 3 𝐵 = (Base‘(𝑆m 𝑅))
2221oveq2i 6921 . 2 ((𝑆Xs𝑅) ↾s 𝐵) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
2320, 22eqtr4i 2852 1 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1656  wcel 2164  wne 2999  {crab 3121  Vcvv 3414  wss 3798  c0 4146  dom cdm 5346  cfv 6127  (class class class)co 6910  Fincfn 8228  Basecbs 16229  s cress 16230  0gc0g 16460  Xscprds 16466  m cdsmm 20445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-hom 16336  df-cco 16337  df-prds 16468  df-dsmm 20446
This theorem is referenced by:  dsmmfi  20452  dsmmlmod  20459  frlmpws  20464
  Copyright terms: Public domain W3C validator