![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmmval2 | Structured version Visualization version GIF version |
Description: Self-referential definition of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
dsmmval2.b | ⊢ 𝐵 = (Base‘(𝑆 ⊕m 𝑅)) |
Ref | Expression |
---|---|
dsmmval2 | ⊢ (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3914 | . . . . . 6 ⊢ {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) | |
2 | eqid 2825 | . . . . . . 7 ⊢ ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) | |
3 | eqid 2825 | . . . . . . 7 ⊢ (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅)) | |
4 | 2, 3 | ressbas2 16301 | . . . . . 6 ⊢ ({𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}))) |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin})) |
6 | 5 | oveq2i 6921 | . . . 4 ⊢ ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}))) |
7 | eqid 2825 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} | |
8 | 7 | dsmmval 20448 | . . . 4 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin})) |
9 | 8 | fveq2d 6441 | . . . . 5 ⊢ (𝑅 ∈ V → (Base‘(𝑆 ⊕m 𝑅)) = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}))) |
10 | 9 | oveq2d 6926 | . . . 4 ⊢ (𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin})))) |
11 | 6, 8, 10 | 3eqtr4a 2887 | . . 3 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅)))) |
12 | ress0 16304 | . . . . 5 ⊢ (∅ ↾s (Base‘(𝑆 ⊕m 𝑅))) = ∅ | |
13 | 12 | eqcomi 2834 | . . . 4 ⊢ ∅ = (∅ ↾s (Base‘(𝑆 ⊕m 𝑅))) |
14 | reldmdsmm 20447 | . . . . 5 ⊢ Rel dom ⊕m | |
15 | 14 | ovprc2 6949 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ∅) |
16 | reldmprds 16469 | . . . . . 6 ⊢ Rel dom Xs | |
17 | 16 | ovprc2 6949 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑆Xs𝑅) = ∅) |
18 | 17 | oveq1d 6925 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) = (∅ ↾s (Base‘(𝑆 ⊕m 𝑅)))) |
19 | 13, 15, 18 | 3eqtr4a 2887 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅)))) |
20 | 11, 19 | pm2.61i 177 | . 2 ⊢ (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) |
21 | dsmmval2.b | . . 3 ⊢ 𝐵 = (Base‘(𝑆 ⊕m 𝑅)) | |
22 | 21 | oveq2i 6921 | . 2 ⊢ ((𝑆Xs𝑅) ↾s 𝐵) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆 ⊕m 𝑅))) |
23 | 20, 22 | eqtr4i 2852 | 1 ⊢ (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 {crab 3121 Vcvv 3414 ⊆ wss 3798 ∅c0 4146 dom cdm 5346 ‘cfv 6127 (class class class)co 6910 Fincfn 8228 Basecbs 16229 ↾s cress 16230 0gc0g 16460 Xscprds 16466 ⊕m cdsmm 20445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-hom 16336 df-cco 16337 df-prds 16468 df-dsmm 20446 |
This theorem is referenced by: dsmmfi 20452 dsmmlmod 20459 frlmpws 20464 |
Copyright terms: Public domain | W3C validator |