MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmval2 Structured version   Visualization version   GIF version

Theorem dsmmval2 21661
Description: Self-referential definition of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
dsmmval2.b 𝐵 = (Base‘(𝑆m 𝑅))
Assertion
Ref Expression
dsmmval2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)

Proof of Theorem dsmmval2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4033 . . . . . 6 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅))
2 eqid 2729 . . . . . . 7 ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
3 eqid 2729 . . . . . . 7 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
42, 3ressbas2 17167 . . . . . 6 ({𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})))
51, 4ax-mp 5 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}))
65oveq2i 7364 . . . 4 ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})))
7 eqid 2729 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
87dsmmval 21659 . . . 4 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}))
98fveq2d 6830 . . . . 5 (𝑅 ∈ V → (Base‘(𝑆m 𝑅)) = (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})))
109oveq2d 7369 . . . 4 (𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘((𝑆Xs𝑅) ↾s {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}))))
116, 8, 103eqtr4a 2790 . . 3 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))))
12 ress0 17172 . . . . 5 (∅ ↾s (Base‘(𝑆m 𝑅))) = ∅
1312eqcomi 2738 . . . 4 ∅ = (∅ ↾s (Base‘(𝑆m 𝑅)))
14 reldmdsmm 21658 . . . . 5 Rel dom ⊕m
1514ovprc2 7393 . . . 4 𝑅 ∈ V → (𝑆m 𝑅) = ∅)
16 reldmprds 17370 . . . . . 6 Rel dom Xs
1716ovprc2 7393 . . . . 5 𝑅 ∈ V → (𝑆Xs𝑅) = ∅)
1817oveq1d 7368 . . . 4 𝑅 ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = (∅ ↾s (Base‘(𝑆m 𝑅))))
1913, 15, 183eqtr4a 2790 . . 3 𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))))
2011, 19pm2.61i 182 . 2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
21 dsmmval2.b . . 3 𝐵 = (Base‘(𝑆m 𝑅))
2221oveq2i 7364 . 2 ((𝑆Xs𝑅) ↾s 𝐵) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
2320, 22eqtr4i 2755 1 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wne 2925  {crab 3396  Vcvv 3438  wss 3905  c0 4286  dom cdm 5623  cfv 6486  (class class class)co 7353  Fincfn 8879  Basecbs 17138  s cress 17159  0gc0g 17361  Xscprds 17367  m cdsmm 21656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-prds 17369  df-dsmm 21657
This theorem is referenced by:  dsmmfi  21663  dsmmlmod  21670  frlmpws  21675
  Copyright terms: Public domain W3C validator