![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ghmquskerco | Structured version Visualization version GIF version |
Description: In the case of theorem ghmqusker 33001, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.) |
Ref | Expression |
---|---|
ghmqusker.1 | ⊢ 0 = (0g‘𝐻) |
ghmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
ghmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
ghmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
ghmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
ghmquskerco.b | ⊢ 𝐵 = (Base‘𝐺) |
ghmquskerco.l | ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) |
Ref | Expression |
---|---|
ghmquskerco | ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmqusker.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
2 | ghmquskerco.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2724 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
4 | 2, 3 | ghmf 19135 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐻)) |
6 | 5 | ffnd 6708 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐵) |
7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
8 | 7 | imaexd 32373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
9 | 8 | uniexd 7725 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
10 | 9 | ralrimiva 3138 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
11 | eqid 2724 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
12 | 11 | fnmpt 6680 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
14 | ovex 7434 | . . . . . . . 8 ⊢ (𝐺 ~QG 𝐾) ∈ V | |
15 | 14 | ecelqsi 8763 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
17 | ghmqusker.q | . . . . . . . . 9 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
20 | ovexd 7436 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) | |
21 | reldmghm 19130 | . . . . . . . . . . 11 ⊢ Rel dom GrpHom | |
22 | 21 | ovrcl 7442 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
23 | 22 | simpld 494 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V) |
24 | 1, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ V) |
25 | 18, 19, 20, 24 | qusbas 17490 | . . . . . . 7 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
27 | 16, 26 | eleqtrd 2827 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
28 | ghmquskerco.l | . . . . . 6 ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) | |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))) |
30 | ghmqusker.j | . . . . . 6 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞))) |
32 | imaeq2 6045 | . . . . . 6 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹 “ 𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
33 | 32 | unieqd 4912 | . . . . 5 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) |
34 | 27, 29, 31, 33 | fmptco 7119 | . . . 4 ⊢ (𝜑 → (𝐽 ∘ 𝐿) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))) |
35 | 34 | fneq1d 6632 | . . 3 ⊢ (𝜑 → ((𝐽 ∘ 𝐿) Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)) |
36 | 13, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐽 ∘ 𝐿) Fn 𝐵) |
37 | ecexg 8703 | . . . . . 6 ⊢ ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V) | |
38 | 14, 37 | ax-mp 5 | . . . . 5 ⊢ [𝑥](𝐺 ~QG 𝐾) ∈ V |
39 | 38, 28 | fnmpti 6683 | . . . 4 ⊢ 𝐿 Fn 𝐵 |
40 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
41 | fvco2 6978 | . . . 4 ⊢ ((𝐿 Fn 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) | |
42 | 39, 40, 41 | sylancr 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) |
43 | 38 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V) |
44 | 29, 43 | fvmpt2d 7001 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐿‘𝑥) = [𝑥](𝐺 ~QG 𝐾)) |
45 | 44 | fveq2d 6885 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘(𝐿‘𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
46 | ghmqusker.1 | . . . 4 ⊢ 0 = (0g‘𝐻) | |
47 | ghmqusker.k | . . . 4 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
48 | 40, 2 | eleqtrdi 2835 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘𝐺)) |
49 | 46, 7, 47, 17, 30, 48 | ghmquskerlem1 32997 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
50 | 42, 45, 49 | 3eqtrrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = ((𝐽 ∘ 𝐿)‘𝑥)) |
51 | 6, 36, 50 | eqfnfvd 7025 | 1 ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 {csn 4620 ∪ cuni 4899 ↦ cmpt 5221 ◡ccnv 5665 “ cima 5669 ∘ ccom 5670 Fn wfn 6528 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 [cec 8697 / cqs 8698 Basecbs 17143 0gc0g 17384 /s cqus 17450 ~QG cqg 19039 GrpHom cghm 19128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-ec 8701 df-qs 8705 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17386 df-imas 17453 df-qus 17454 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-subg 19040 df-nsg 19041 df-eqg 19042 df-ghm 19129 |
This theorem is referenced by: algextdeglem4 33256 |
Copyright terms: Public domain | W3C validator |