MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerco Structured version   Visualization version   GIF version

Theorem ghmquskerco 19163
Description: In the case of theorem ghmqusker 19166, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerco.b 𝐵 = (Base‘𝐺)
ghmquskerco.l 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
Assertion
Ref Expression
ghmquskerco (𝜑𝐹 = (𝐽𝐿))
Distinct variable groups:   𝑥, 0   𝐵,𝑞,𝑥   𝐹,𝑞,𝑥   𝐺,𝑞,𝑥   𝐻,𝑞,𝑥   𝐽,𝑞,𝑥   𝐾,𝑞,𝑥   𝑥,𝐿   𝑄,𝑞,𝑥   𝜑,𝑞,𝑥
Allowed substitution hints:   𝐿(𝑞)   0 (𝑞)

Proof of Theorem ghmquskerco
StepHypRef Expression
1 ghmqusker.f . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
2 ghmquskerco.b . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
42, 3ghmf 19099 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
51, 4syl 17 . . 3 (𝜑𝐹:𝐵⟶(Base‘𝐻))
65ffnd 6653 . 2 (𝜑𝐹 Fn 𝐵)
71adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
87imaexd 7849 . . . . . 6 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
98uniexd 7678 . . . . 5 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
109ralrimiva 3121 . . . 4 (𝜑 → ∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
11 eqid 2729 . . . . 5 (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
1211fnmpt 6622 . . . 4 (∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
1310, 12syl 17 . . 3 (𝜑 → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
14 ovex 7382 . . . . . . . 8 (𝐺 ~QG 𝐾) ∈ V
1514ecelqsi 8697 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
1615adantl 481 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
17 ghmqusker.q . . . . . . . . 9 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
1817a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
192a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7384 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
21 reldmghm 19093 . . . . . . . . . . 11 Rel dom GrpHom
2221ovrcl 7390 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V))
2322simpld 494 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V)
241, 23syl 17 . . . . . . . 8 (𝜑𝐺 ∈ V)
2518, 19, 20, 24qusbas 17449 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2625adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2716, 26eleqtrd 2830 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
28 ghmquskerco.l . . . . . 6 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
2928a1i 11 . . . . 5 (𝜑𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)))
30 ghmqusker.j . . . . . 6 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
3130a1i 11 . . . . 5 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
32 imaeq2 6007 . . . . . 6 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3332unieqd 4871 . . . . 5 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3427, 29, 31, 33fmptco 7063 . . . 4 (𝜑 → (𝐽𝐿) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))))
3534fneq1d 6575 . . 3 (𝜑 → ((𝐽𝐿) Fn 𝐵 ↔ (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵))
3613, 35mpbird 257 . 2 (𝜑 → (𝐽𝐿) Fn 𝐵)
37 ecexg 8629 . . . . . 6 ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V)
3814, 37ax-mp 5 . . . . 5 [𝑥](𝐺 ~QG 𝐾) ∈ V
3938, 28fnmpti 6625 . . . 4 𝐿 Fn 𝐵
40 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
41 fvco2 6920 . . . 4 ((𝐿 Fn 𝐵𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4239, 40, 41sylancr 587 . . 3 ((𝜑𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4338a1i 11 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V)
4429, 43fvmpt2d 6943 . . . 4 ((𝜑𝑥𝐵) → (𝐿𝑥) = [𝑥](𝐺 ~QG 𝐾))
4544fveq2d 6826 . . 3 ((𝜑𝑥𝐵) → (𝐽‘(𝐿𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
46 ghmqusker.1 . . . 4 0 = (0g𝐻)
47 ghmqusker.k . . . 4 𝐾 = (𝐹 “ { 0 })
4840, 2eleqtrdi 2838 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ∈ (Base‘𝐺))
4946, 7, 47, 17, 30, 48ghmquskerlem1 19162 . . 3 ((𝜑𝑥𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
5042, 45, 493eqtrrd 2769 . 2 ((𝜑𝑥𝐵) → (𝐹𝑥) = ((𝐽𝐿)‘𝑥))
516, 36, 50eqfnfvd 6968 1 (𝜑𝐹 = (𝐽𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  {csn 4577   cuni 4858  cmpt 5173  ccnv 5618  cima 5622  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  [cec 8623   / cqs 8624  Basecbs 17120  0gc0g 17343   /s cqus 17409   ~QG cqg 19001   GrpHom cghm 19091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092
This theorem is referenced by:  algextdeglem4  33687  aks6d1c6lem5  42150
  Copyright terms: Public domain W3C validator