MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerco Structured version   Visualization version   GIF version

Theorem ghmquskerco 19216
Description: In the case of theorem ghmqusker 19219, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerco.b 𝐵 = (Base‘𝐺)
ghmquskerco.l 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
Assertion
Ref Expression
ghmquskerco (𝜑𝐹 = (𝐽𝐿))
Distinct variable groups:   𝑥, 0   𝐵,𝑞,𝑥   𝐹,𝑞,𝑥   𝐺,𝑞,𝑥   𝐻,𝑞,𝑥   𝐽,𝑞,𝑥   𝐾,𝑞,𝑥   𝑥,𝐿   𝑄,𝑞,𝑥   𝜑,𝑞,𝑥
Allowed substitution hints:   𝐿(𝑞)   0 (𝑞)

Proof of Theorem ghmquskerco
StepHypRef Expression
1 ghmqusker.f . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
2 ghmquskerco.b . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
42, 3ghmf 19152 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
51, 4syl 17 . . 3 (𝜑𝐹:𝐵⟶(Base‘𝐻))
65ffnd 6689 . 2 (𝜑𝐹 Fn 𝐵)
71adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
87imaexd 7892 . . . . . 6 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
98uniexd 7718 . . . . 5 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
109ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
11 eqid 2729 . . . . 5 (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
1211fnmpt 6658 . . . 4 (∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
1310, 12syl 17 . . 3 (𝜑 → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
14 ovex 7420 . . . . . . . 8 (𝐺 ~QG 𝐾) ∈ V
1514ecelqsi 8743 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
1615adantl 481 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
17 ghmqusker.q . . . . . . . . 9 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
1817a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
192a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7422 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
21 reldmghm 19146 . . . . . . . . . . 11 Rel dom GrpHom
2221ovrcl 7428 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V))
2322simpld 494 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V)
241, 23syl 17 . . . . . . . 8 (𝜑𝐺 ∈ V)
2518, 19, 20, 24qusbas 17508 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2625adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2716, 26eleqtrd 2830 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
28 ghmquskerco.l . . . . . 6 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
2928a1i 11 . . . . 5 (𝜑𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)))
30 ghmqusker.j . . . . . 6 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
3130a1i 11 . . . . 5 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
32 imaeq2 6027 . . . . . 6 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3332unieqd 4884 . . . . 5 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3427, 29, 31, 33fmptco 7101 . . . 4 (𝜑 → (𝐽𝐿) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))))
3534fneq1d 6611 . . 3 (𝜑 → ((𝐽𝐿) Fn 𝐵 ↔ (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵))
3613, 35mpbird 257 . 2 (𝜑 → (𝐽𝐿) Fn 𝐵)
37 ecexg 8675 . . . . . 6 ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V)
3814, 37ax-mp 5 . . . . 5 [𝑥](𝐺 ~QG 𝐾) ∈ V
3938, 28fnmpti 6661 . . . 4 𝐿 Fn 𝐵
40 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
41 fvco2 6958 . . . 4 ((𝐿 Fn 𝐵𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4239, 40, 41sylancr 587 . . 3 ((𝜑𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4338a1i 11 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V)
4429, 43fvmpt2d 6981 . . . 4 ((𝜑𝑥𝐵) → (𝐿𝑥) = [𝑥](𝐺 ~QG 𝐾))
4544fveq2d 6862 . . 3 ((𝜑𝑥𝐵) → (𝐽‘(𝐿𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
46 ghmqusker.1 . . . 4 0 = (0g𝐻)
47 ghmqusker.k . . . 4 𝐾 = (𝐹 “ { 0 })
4840, 2eleqtrdi 2838 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ∈ (Base‘𝐺))
4946, 7, 47, 17, 30, 48ghmquskerlem1 19215 . . 3 ((𝜑𝑥𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
5042, 45, 493eqtrrd 2769 . 2 ((𝜑𝑥𝐵) → (𝐹𝑥) = ((𝐽𝐿)‘𝑥))
516, 36, 50eqfnfvd 7006 1 (𝜑𝐹 = (𝐽𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  [cec 8669   / cqs 8670  Basecbs 17179  0gc0g 17402   /s cqus 17468   ~QG cqg 19054   GrpHom cghm 19144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145
This theorem is referenced by:  algextdeglem4  33710  aks6d1c6lem5  42165
  Copyright terms: Public domain W3C validator