MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerco Structured version   Visualization version   GIF version

Theorem ghmquskerco 19267
Description: In the case of theorem ghmqusker 19270, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerco.b 𝐵 = (Base‘𝐺)
ghmquskerco.l 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
Assertion
Ref Expression
ghmquskerco (𝜑𝐹 = (𝐽𝐿))
Distinct variable groups:   𝑥, 0   𝐵,𝑞,𝑥   𝐹,𝑞,𝑥   𝐺,𝑞,𝑥   𝐻,𝑞,𝑥   𝐽,𝑞,𝑥   𝐾,𝑞,𝑥   𝑥,𝐿   𝑄,𝑞,𝑥   𝜑,𝑞,𝑥
Allowed substitution hints:   𝐿(𝑞)   0 (𝑞)

Proof of Theorem ghmquskerco
StepHypRef Expression
1 ghmqusker.f . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
2 ghmquskerco.b . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2735 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
42, 3ghmf 19203 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
51, 4syl 17 . . 3 (𝜑𝐹:𝐵⟶(Base‘𝐻))
65ffnd 6707 . 2 (𝜑𝐹 Fn 𝐵)
71adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
87imaexd 7912 . . . . . 6 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
98uniexd 7736 . . . . 5 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
109ralrimiva 3132 . . . 4 (𝜑 → ∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
11 eqid 2735 . . . . 5 (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
1211fnmpt 6678 . . . 4 (∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
1310, 12syl 17 . . 3 (𝜑 → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
14 ovex 7438 . . . . . . . 8 (𝐺 ~QG 𝐾) ∈ V
1514ecelqsi 8787 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
1615adantl 481 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
17 ghmqusker.q . . . . . . . . 9 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
1817a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
192a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7440 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
21 reldmghm 19197 . . . . . . . . . . 11 Rel dom GrpHom
2221ovrcl 7446 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V))
2322simpld 494 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V)
241, 23syl 17 . . . . . . . 8 (𝜑𝐺 ∈ V)
2518, 19, 20, 24qusbas 17559 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2625adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2716, 26eleqtrd 2836 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
28 ghmquskerco.l . . . . . 6 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
2928a1i 11 . . . . 5 (𝜑𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)))
30 ghmqusker.j . . . . . 6 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
3130a1i 11 . . . . 5 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
32 imaeq2 6043 . . . . . 6 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3332unieqd 4896 . . . . 5 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3427, 29, 31, 33fmptco 7119 . . . 4 (𝜑 → (𝐽𝐿) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))))
3534fneq1d 6631 . . 3 (𝜑 → ((𝐽𝐿) Fn 𝐵 ↔ (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵))
3613, 35mpbird 257 . 2 (𝜑 → (𝐽𝐿) Fn 𝐵)
37 ecexg 8723 . . . . . 6 ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V)
3814, 37ax-mp 5 . . . . 5 [𝑥](𝐺 ~QG 𝐾) ∈ V
3938, 28fnmpti 6681 . . . 4 𝐿 Fn 𝐵
40 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
41 fvco2 6976 . . . 4 ((𝐿 Fn 𝐵𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4239, 40, 41sylancr 587 . . 3 ((𝜑𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4338a1i 11 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V)
4429, 43fvmpt2d 6999 . . . 4 ((𝜑𝑥𝐵) → (𝐿𝑥) = [𝑥](𝐺 ~QG 𝐾))
4544fveq2d 6880 . . 3 ((𝜑𝑥𝐵) → (𝐽‘(𝐿𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
46 ghmqusker.1 . . . 4 0 = (0g𝐻)
47 ghmqusker.k . . . 4 𝐾 = (𝐹 “ { 0 })
4840, 2eleqtrdi 2844 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ∈ (Base‘𝐺))
4946, 7, 47, 17, 30, 48ghmquskerlem1 19266 . . 3 ((𝜑𝑥𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
5042, 45, 493eqtrrd 2775 . 2 ((𝜑𝑥𝐵) → (𝐹𝑥) = ((𝐽𝐿)‘𝑥))
516, 36, 50eqfnfvd 7024 1 (𝜑𝐹 = (𝐽𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  {csn 4601   cuni 4883  cmpt 5201  ccnv 5653  cima 5657  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  [cec 8717   / cqs 8718  Basecbs 17228  0gc0g 17453   /s cqus 17519   ~QG cqg 19105   GrpHom cghm 19195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196
This theorem is referenced by:  algextdeglem4  33754  aks6d1c6lem5  42190
  Copyright terms: Public domain W3C validator