![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmquskerco | Structured version Visualization version GIF version |
Description: In the case of theorem ghmqusker 19327, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.) |
Ref | Expression |
---|---|
ghmqusker.1 | ⊢ 0 = (0g‘𝐻) |
ghmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
ghmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
ghmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
ghmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
ghmquskerco.b | ⊢ 𝐵 = (Base‘𝐺) |
ghmquskerco.l | ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) |
Ref | Expression |
---|---|
ghmquskerco | ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmqusker.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
2 | ghmquskerco.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
4 | 2, 3 | ghmf 19260 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐻)) |
6 | 5 | ffnd 6748 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐵) |
7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
8 | 7 | imaexd 7956 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
9 | 8 | uniexd 7777 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
10 | 9 | ralrimiva 3152 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
11 | eqid 2740 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
12 | 11 | fnmpt 6720 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
14 | ovex 7481 | . . . . . . . 8 ⊢ (𝐺 ~QG 𝐾) ∈ V | |
15 | 14 | ecelqsi 8831 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
17 | ghmqusker.q | . . . . . . . . 9 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
20 | ovexd 7483 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) | |
21 | reldmghm 19254 | . . . . . . . . . . 11 ⊢ Rel dom GrpHom | |
22 | 21 | ovrcl 7489 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
23 | 22 | simpld 494 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V) |
24 | 1, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ V) |
25 | 18, 19, 20, 24 | qusbas 17605 | . . . . . . 7 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
27 | 16, 26 | eleqtrd 2846 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
28 | ghmquskerco.l | . . . . . 6 ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) | |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))) |
30 | ghmqusker.j | . . . . . 6 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞))) |
32 | imaeq2 6085 | . . . . . 6 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹 “ 𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
33 | 32 | unieqd 4944 | . . . . 5 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) |
34 | 27, 29, 31, 33 | fmptco 7163 | . . . 4 ⊢ (𝜑 → (𝐽 ∘ 𝐿) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))) |
35 | 34 | fneq1d 6672 | . . 3 ⊢ (𝜑 → ((𝐽 ∘ 𝐿) Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)) |
36 | 13, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐽 ∘ 𝐿) Fn 𝐵) |
37 | ecexg 8767 | . . . . . 6 ⊢ ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V) | |
38 | 14, 37 | ax-mp 5 | . . . . 5 ⊢ [𝑥](𝐺 ~QG 𝐾) ∈ V |
39 | 38, 28 | fnmpti 6723 | . . . 4 ⊢ 𝐿 Fn 𝐵 |
40 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
41 | fvco2 7019 | . . . 4 ⊢ ((𝐿 Fn 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) | |
42 | 39, 40, 41 | sylancr 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) |
43 | 38 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V) |
44 | 29, 43 | fvmpt2d 7042 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐿‘𝑥) = [𝑥](𝐺 ~QG 𝐾)) |
45 | 44 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘(𝐿‘𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
46 | ghmqusker.1 | . . . 4 ⊢ 0 = (0g‘𝐻) | |
47 | ghmqusker.k | . . . 4 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
48 | 40, 2 | eleqtrdi 2854 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘𝐺)) |
49 | 46, 7, 47, 17, 30, 48 | ghmquskerlem1 19323 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
50 | 42, 45, 49 | 3eqtrrd 2785 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = ((𝐽 ∘ 𝐿)‘𝑥)) |
51 | 6, 36, 50 | eqfnfvd 7067 | 1 ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 [cec 8761 / cqs 8762 Basecbs 17258 0gc0g 17499 /s cqus 17565 ~QG cqg 19162 GrpHom cghm 19252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 |
This theorem is referenced by: algextdeglem4 33711 aks6d1c6lem5 42134 |
Copyright terms: Public domain | W3C validator |