![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ghmquskerco | Structured version Visualization version GIF version |
Description: In the case of theorem ghmqusker 32972, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.) |
Ref | Expression |
---|---|
ghmqusker.1 | ⊢ 0 = (0g‘𝐻) |
ghmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
ghmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
ghmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
ghmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
ghmquskerco.b | ⊢ 𝐵 = (Base‘𝐺) |
ghmquskerco.l | ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) |
Ref | Expression |
---|---|
ghmquskerco | ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmqusker.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
2 | ghmquskerco.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
4 | 2, 3 | ghmf 19141 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐻)) |
6 | 5 | ffnd 6718 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐵) |
7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
8 | 7 | imaexd 32337 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
9 | 8 | uniexd 7736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
10 | 9 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
11 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
12 | 11 | fnmpt 6690 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
14 | ovex 7445 | . . . . . . . 8 ⊢ (𝐺 ~QG 𝐾) ∈ V | |
15 | 14 | ecelqsi 8773 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
17 | ghmqusker.q | . . . . . . . . 9 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
20 | ovexd 7447 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) | |
21 | reldmghm 19136 | . . . . . . . . . . 11 ⊢ Rel dom GrpHom | |
22 | 21 | ovrcl 7453 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
23 | 22 | simpld 494 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V) |
24 | 1, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ V) |
25 | 18, 19, 20, 24 | qusbas 17498 | . . . . . . 7 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
27 | 16, 26 | eleqtrd 2834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
28 | ghmquskerco.l | . . . . . 6 ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) | |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))) |
30 | ghmqusker.j | . . . . . 6 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞))) |
32 | imaeq2 6055 | . . . . . 6 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹 “ 𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
33 | 32 | unieqd 4922 | . . . . 5 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) |
34 | 27, 29, 31, 33 | fmptco 7129 | . . . 4 ⊢ (𝜑 → (𝐽 ∘ 𝐿) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))) |
35 | 34 | fneq1d 6642 | . . 3 ⊢ (𝜑 → ((𝐽 ∘ 𝐿) Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)) |
36 | 13, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐽 ∘ 𝐿) Fn 𝐵) |
37 | ecexg 8713 | . . . . . 6 ⊢ ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V) | |
38 | 14, 37 | ax-mp 5 | . . . . 5 ⊢ [𝑥](𝐺 ~QG 𝐾) ∈ V |
39 | 38, 28 | fnmpti 6693 | . . . 4 ⊢ 𝐿 Fn 𝐵 |
40 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
41 | fvco2 6988 | . . . 4 ⊢ ((𝐿 Fn 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) | |
42 | 39, 40, 41 | sylancr 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) |
43 | 38 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V) |
44 | 29, 43 | fvmpt2d 7011 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐿‘𝑥) = [𝑥](𝐺 ~QG 𝐾)) |
45 | 44 | fveq2d 6895 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘(𝐿‘𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
46 | ghmqusker.1 | . . . 4 ⊢ 0 = (0g‘𝐻) | |
47 | ghmqusker.k | . . . 4 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
48 | 40, 2 | eleqtrdi 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘𝐺)) |
49 | 46, 7, 47, 17, 30, 48 | ghmquskerlem1 32968 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
50 | 42, 45, 49 | 3eqtrrd 2776 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = ((𝐽 ∘ 𝐿)‘𝑥)) |
51 | 6, 36, 50 | eqfnfvd 7035 | 1 ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 {csn 4628 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 ∘ ccom 5680 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 [cec 8707 / cqs 8708 Basecbs 17151 0gc0g 17392 /s cqus 17458 ~QG cqg 19045 GrpHom cghm 19134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-ec 8711 df-qs 8715 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-0g 17394 df-imas 17461 df-qus 17462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-nsg 19047 df-eqg 19048 df-ghm 19135 |
This theorem is referenced by: algextdeglem4 33231 |
Copyright terms: Public domain | W3C validator |