| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmquskerco | Structured version Visualization version GIF version | ||
| Description: In the case of theorem ghmqusker 19226, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| ghmqusker.1 | ⊢ 0 = (0g‘𝐻) |
| ghmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| ghmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| ghmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
| ghmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
| ghmquskerco.b | ⊢ 𝐵 = (Base‘𝐺) |
| ghmquskerco.l | ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) |
| Ref | Expression |
|---|---|
| ghmquskerco | ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
| 2 | ghmquskerco.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 4 | 2, 3 | ghmf 19159 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻)) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐻)) |
| 6 | 5 | ffnd 6692 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐵) |
| 7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 8 | 7 | imaexd 7895 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
| 9 | 8 | uniexd 7721 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
| 10 | 9 | ralrimiva 3126 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
| 11 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
| 12 | 11 | fnmpt 6661 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
| 13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
| 14 | ovex 7423 | . . . . . . . 8 ⊢ (𝐺 ~QG 𝐾) ∈ V | |
| 15 | 14 | ecelqsi 8746 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
| 17 | ghmqusker.q | . . . . . . . . 9 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
| 19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| 20 | ovexd 7425 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) | |
| 21 | reldmghm 19153 | . . . . . . . . . . 11 ⊢ Rel dom GrpHom | |
| 22 | 21 | ovrcl 7431 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 23 | 22 | simpld 494 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V) |
| 24 | 1, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ V) |
| 25 | 18, 19, 20, 24 | qusbas 17515 | . . . . . . 7 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 27 | 16, 26 | eleqtrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
| 28 | ghmquskerco.l | . . . . . 6 ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) | |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))) |
| 30 | ghmqusker.j | . . . . . 6 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
| 31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞))) |
| 32 | imaeq2 6030 | . . . . . 6 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹 “ 𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
| 33 | 32 | unieqd 4887 | . . . . 5 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) |
| 34 | 27, 29, 31, 33 | fmptco 7104 | . . . 4 ⊢ (𝜑 → (𝐽 ∘ 𝐿) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))) |
| 35 | 34 | fneq1d 6614 | . . 3 ⊢ (𝜑 → ((𝐽 ∘ 𝐿) Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)) |
| 36 | 13, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐽 ∘ 𝐿) Fn 𝐵) |
| 37 | ecexg 8678 | . . . . . 6 ⊢ ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V) | |
| 38 | 14, 37 | ax-mp 5 | . . . . 5 ⊢ [𝑥](𝐺 ~QG 𝐾) ∈ V |
| 39 | 38, 28 | fnmpti 6664 | . . . 4 ⊢ 𝐿 Fn 𝐵 |
| 40 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 41 | fvco2 6961 | . . . 4 ⊢ ((𝐿 Fn 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) | |
| 42 | 39, 40, 41 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) |
| 43 | 38 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V) |
| 44 | 29, 43 | fvmpt2d 6984 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐿‘𝑥) = [𝑥](𝐺 ~QG 𝐾)) |
| 45 | 44 | fveq2d 6865 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘(𝐿‘𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
| 46 | ghmqusker.1 | . . . 4 ⊢ 0 = (0g‘𝐻) | |
| 47 | ghmqusker.k | . . . 4 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
| 48 | 40, 2 | eleqtrdi 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘𝐺)) |
| 49 | 46, 7, 47, 17, 30, 48 | ghmquskerlem1 19222 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
| 50 | 42, 45, 49 | 3eqtrrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = ((𝐽 ∘ 𝐿)‘𝑥)) |
| 51 | 6, 36, 50 | eqfnfvd 7009 | 1 ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 [cec 8672 / cqs 8673 Basecbs 17186 0gc0g 17409 /s cqus 17475 ~QG cqg 19061 GrpHom cghm 19151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 |
| This theorem is referenced by: algextdeglem4 33717 aks6d1c6lem5 42172 |
| Copyright terms: Public domain | W3C validator |