| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmquskerco | Structured version Visualization version GIF version | ||
| Description: In the case of theorem ghmqusker 19166, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| ghmqusker.1 | ⊢ 0 = (0g‘𝐻) |
| ghmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| ghmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| ghmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
| ghmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
| ghmquskerco.b | ⊢ 𝐵 = (Base‘𝐺) |
| ghmquskerco.l | ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) |
| Ref | Expression |
|---|---|
| ghmquskerco | ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
| 2 | ghmquskerco.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 4 | 2, 3 | ghmf 19099 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻)) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐻)) |
| 6 | 5 | ffnd 6653 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐵) |
| 7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 8 | 7 | imaexd 7849 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
| 9 | 8 | uniexd 7678 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
| 10 | 9 | ralrimiva 3121 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V) |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
| 12 | 11 | fnmpt 6622 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
| 13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵) |
| 14 | ovex 7382 | . . . . . . . 8 ⊢ (𝐺 ~QG 𝐾) ∈ V | |
| 15 | 14 | ecelqsi 8697 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾))) |
| 17 | ghmqusker.q | . . . . . . . . 9 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
| 19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| 20 | ovexd 7384 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) | |
| 21 | reldmghm 19093 | . . . . . . . . . . 11 ⊢ Rel dom GrpHom | |
| 22 | 21 | ovrcl 7390 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 23 | 22 | simpld 494 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V) |
| 24 | 1, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ V) |
| 25 | 18, 19, 20, 24 | qusbas 17449 | . . . . . . 7 ⊢ (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 27 | 16, 26 | eleqtrd 2830 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
| 28 | ghmquskerco.l | . . . . . 6 ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) | |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))) |
| 30 | ghmqusker.j | . . . . . 6 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
| 31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞))) |
| 32 | imaeq2 6007 | . . . . . 6 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹 “ 𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) | |
| 33 | 32 | unieqd 4871 | . . . . 5 ⊢ (𝑞 = [𝑥](𝐺 ~QG 𝐾) → ∪ (𝐹 “ 𝑞) = ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) |
| 34 | 27, 29, 31, 33 | fmptco 7063 | . . . 4 ⊢ (𝜑 → (𝐽 ∘ 𝐿) = (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))) |
| 35 | 34 | fneq1d 6575 | . . 3 ⊢ (𝜑 → ((𝐽 ∘ 𝐿) Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ ∪ (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)) |
| 36 | 13, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐽 ∘ 𝐿) Fn 𝐵) |
| 37 | ecexg 8629 | . . . . . 6 ⊢ ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V) | |
| 38 | 14, 37 | ax-mp 5 | . . . . 5 ⊢ [𝑥](𝐺 ~QG 𝐾) ∈ V |
| 39 | 38, 28 | fnmpti 6625 | . . . 4 ⊢ 𝐿 Fn 𝐵 |
| 40 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 41 | fvco2 6920 | . . . 4 ⊢ ((𝐿 Fn 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) | |
| 42 | 39, 40, 41 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝐽 ∘ 𝐿)‘𝑥) = (𝐽‘(𝐿‘𝑥))) |
| 43 | 38 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V) |
| 44 | 29, 43 | fvmpt2d 6943 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐿‘𝑥) = [𝑥](𝐺 ~QG 𝐾)) |
| 45 | 44 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘(𝐿‘𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
| 46 | ghmqusker.1 | . . . 4 ⊢ 0 = (0g‘𝐻) | |
| 47 | ghmqusker.k | . . . 4 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
| 48 | 40, 2 | eleqtrdi 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘𝐺)) |
| 49 | 46, 7, 47, 17, 30, 48 | ghmquskerlem1 19162 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
| 50 | 42, 45, 49 | 3eqtrrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = ((𝐽 ∘ 𝐿)‘𝑥)) |
| 51 | 6, 36, 50 | eqfnfvd 6968 | 1 ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 {csn 4577 ∪ cuni 4858 ↦ cmpt 5173 ◡ccnv 5618 “ cima 5622 ∘ ccom 5623 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 [cec 8623 / cqs 8624 Basecbs 17120 0gc0g 17343 /s cqus 17409 ~QG cqg 19001 GrpHom cghm 19091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 |
| This theorem is referenced by: algextdeglem4 33687 aks6d1c6lem5 42150 |
| Copyright terms: Public domain | W3C validator |