MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerco Structured version   Visualization version   GIF version

Theorem ghmquskerco 19192
Description: In the case of theorem ghmqusker 19195, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerco.b 𝐵 = (Base‘𝐺)
ghmquskerco.l 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
Assertion
Ref Expression
ghmquskerco (𝜑𝐹 = (𝐽𝐿))
Distinct variable groups:   𝑥, 0   𝐵,𝑞,𝑥   𝐹,𝑞,𝑥   𝐺,𝑞,𝑥   𝐻,𝑞,𝑥   𝐽,𝑞,𝑥   𝐾,𝑞,𝑥   𝑥,𝐿   𝑄,𝑞,𝑥   𝜑,𝑞,𝑥
Allowed substitution hints:   𝐿(𝑞)   0 (𝑞)

Proof of Theorem ghmquskerco
StepHypRef Expression
1 ghmqusker.f . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
2 ghmquskerco.b . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
42, 3ghmf 19128 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
51, 4syl 17 . . 3 (𝜑𝐹:𝐵⟶(Base‘𝐻))
65ffnd 6671 . 2 (𝜑𝐹 Fn 𝐵)
71adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
87imaexd 7872 . . . . . 6 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
98uniexd 7698 . . . . 5 ((𝜑𝑥𝐵) → (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
109ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V)
11 eqid 2729 . . . . 5 (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
1211fnmpt 6640 . . . 4 (∀𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾)) ∈ V → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
1310, 12syl 17 . . 3 (𝜑 → (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵)
14 ovex 7402 . . . . . . . 8 (𝐺 ~QG 𝐾) ∈ V
1514ecelqsi 8720 . . . . . . 7 (𝑥𝐵 → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
1615adantl 481 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (𝐵 / (𝐺 ~QG 𝐾)))
17 ghmqusker.q . . . . . . . . 9 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
1817a1i 11 . . . . . . . 8 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
192a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
20 ovexd 7404 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
21 reldmghm 19122 . . . . . . . . . . 11 Rel dom GrpHom
2221ovrcl 7410 . . . . . . . . . 10 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐺 ∈ V ∧ 𝐻 ∈ V))
2322simpld 494 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ V)
241, 23syl 17 . . . . . . . 8 (𝜑𝐺 ∈ V)
2518, 19, 20, 24qusbas 17484 . . . . . . 7 (𝜑 → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2625adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → (𝐵 / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
2716, 26eleqtrd 2830 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
28 ghmquskerco.l . . . . . 6 𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾))
2928a1i 11 . . . . 5 (𝜑𝐿 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)))
30 ghmqusker.j . . . . . 6 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
3130a1i 11 . . . . 5 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
32 imaeq2 6016 . . . . . 6 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3332unieqd 4880 . . . . 5 (𝑞 = [𝑥](𝐺 ~QG 𝐾) → (𝐹𝑞) = (𝐹 “ [𝑥](𝐺 ~QG 𝐾)))
3427, 29, 31, 33fmptco 7083 . . . 4 (𝜑 → (𝐽𝐿) = (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))))
3534fneq1d 6593 . . 3 (𝜑 → ((𝐽𝐿) Fn 𝐵 ↔ (𝑥𝐵 (𝐹 “ [𝑥](𝐺 ~QG 𝐾))) Fn 𝐵))
3613, 35mpbird 257 . 2 (𝜑 → (𝐽𝐿) Fn 𝐵)
37 ecexg 8652 . . . . . 6 ((𝐺 ~QG 𝐾) ∈ V → [𝑥](𝐺 ~QG 𝐾) ∈ V)
3814, 37ax-mp 5 . . . . 5 [𝑥](𝐺 ~QG 𝐾) ∈ V
3938, 28fnmpti 6643 . . . 4 𝐿 Fn 𝐵
40 simpr 484 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐵)
41 fvco2 6940 . . . 4 ((𝐿 Fn 𝐵𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4239, 40, 41sylancr 587 . . 3 ((𝜑𝑥𝐵) → ((𝐽𝐿)‘𝑥) = (𝐽‘(𝐿𝑥)))
4338a1i 11 . . . . 5 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝐾) ∈ V)
4429, 43fvmpt2d 6963 . . . 4 ((𝜑𝑥𝐵) → (𝐿𝑥) = [𝑥](𝐺 ~QG 𝐾))
4544fveq2d 6844 . . 3 ((𝜑𝑥𝐵) → (𝐽‘(𝐿𝑥)) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
46 ghmqusker.1 . . . 4 0 = (0g𝐻)
47 ghmqusker.k . . . 4 𝐾 = (𝐹 “ { 0 })
4840, 2eleqtrdi 2838 . . . 4 ((𝜑𝑥𝐵) → 𝑥 ∈ (Base‘𝐺))
4946, 7, 47, 17, 30, 48ghmquskerlem1 19191 . . 3 ((𝜑𝑥𝐵) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
5042, 45, 493eqtrrd 2769 . 2 ((𝜑𝑥𝐵) → (𝐹𝑥) = ((𝐽𝐿)‘𝑥))
516, 36, 50eqfnfvd 6988 1 (𝜑𝐹 = (𝐽𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  {csn 4585   cuni 4867  cmpt 5183  ccnv 5630  cima 5634  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  0gc0g 17378   /s cqus 17444   ~QG cqg 19030   GrpHom cghm 19120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-nsg 19032  df-eqg 19033  df-ghm 19121
This theorem is referenced by:  algextdeglem4  33683  aks6d1c6lem5  42138
  Copyright terms: Public domain W3C validator