Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof1 Structured version   Visualization version   GIF version

Theorem reldmprcof1 49154
Description: The domain of the object part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof1 Rel dom (1st ‘(𝑃 −∘F 𝐹))

Proof of Theorem reldmprcof1
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17862 . . . 4 Rel ((1st𝑃) Func (2nd𝑃))
2 ovex 7433 . . . . . 6 (𝑘func 𝐹) ∈ V
3 eqid 2734 . . . . . 6 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹))
42, 3dmmpti 6679 . . . . 5 dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) = ((1st𝑃) Func (2nd𝑃))
54releqi 5754 . . . 4 (Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ↔ Rel ((1st𝑃) Func (2nd𝑃)))
61, 5mpbir 231 . . 3 Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹))
7 eqid 2734 . . . . . . 7 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
8 eqid 2734 . . . . . . 7 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
9 simpr 484 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝐹 ∈ V)
10 simpl 482 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝑃 ∈ V)
11 eqidd 2735 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st𝑃) = (1st𝑃))
12 eqidd 2735 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd𝑃) = (2nd𝑃))
137, 8, 9, 10, 11, 12prcofvalg 49150 . . . . . 6 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
14 ovex 7433 . . . . . . . 8 ((1st𝑃) Func (2nd𝑃)) ∈ V
1514mptex 7212 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
1614, 14mpoex 8073 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1715, 16op1std 7993 . . . . . 6 ((𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ → (1st ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)))
1813, 17syl 17 . . . . 5 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)))
1918dmeqd 5883 . . . 4 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (1st ‘(𝑃 −∘F 𝐹)) = dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)))
2019releqd 5755 . . 3 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (1st ‘(𝑃 −∘F 𝐹)) ↔ Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹))))
216, 20mpbiri 258 . 2 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (1st ‘(𝑃 −∘F 𝐹)))
22 rel0 5776 . . 3 Rel ∅
23 reldmprcof 49149 . . . . . . . . 9 Rel dom −∘F
2423ovprc 7438 . . . . . . . 8 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ∅)
2524fveq2d 6877 . . . . . . 7 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st ‘(𝑃 −∘F 𝐹)) = (1st ‘∅))
26 1st0 7989 . . . . . . 7 (1st ‘∅) = ∅
2725, 26eqtrdi 2785 . . . . . 6 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st ‘(𝑃 −∘F 𝐹)) = ∅)
2827dmeqd 5883 . . . . 5 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (1st ‘(𝑃 −∘F 𝐹)) = dom ∅)
29 dm0 5898 . . . . 5 dom ∅ = ∅
3028, 29eqtrdi 2785 . . . 4 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (1st ‘(𝑃 −∘F 𝐹)) = ∅)
3130releqd 5755 . . 3 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (1st ‘(𝑃 −∘F 𝐹)) ↔ Rel ∅))
3222, 31mpbiri 258 . 2 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (1st ‘(𝑃 −∘F 𝐹)))
3321, 32pm2.61i 182 1 Rel dom (1st ‘(𝑃 −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  c0 4306  cop 4605  cmpt 5199  dom cdm 5652  ccom 5656  Rel wrel 5657  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854  func ccofu 17856   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-func 17858  df-prcof 49148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator