Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof1 Structured version   Visualization version   GIF version

Theorem reldmprcof1 49363
Description: The domain of the object part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof1 Rel dom (1st ‘(𝑃 −∘F 𝐹))

Proof of Theorem reldmprcof1
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17804 . . . 4 Rel ((1st𝑃) Func (2nd𝑃))
2 ovex 7402 . . . . . 6 (𝑘func 𝐹) ∈ V
3 eqid 2729 . . . . . 6 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹))
42, 3dmmpti 6644 . . . . 5 dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) = ((1st𝑃) Func (2nd𝑃))
54releqi 5732 . . . 4 (Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ↔ Rel ((1st𝑃) Func (2nd𝑃)))
61, 5mpbir 231 . . 3 Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹))
7 eqid 2729 . . . . . . 7 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
8 eqid 2729 . . . . . . 7 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
9 simpr 484 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝐹 ∈ V)
10 simpl 482 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝑃 ∈ V)
11 eqidd 2730 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st𝑃) = (1st𝑃))
12 eqidd 2730 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd𝑃) = (2nd𝑃))
137, 8, 9, 10, 11, 12prcofvalg 49358 . . . . . 6 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
14 ovex 7402 . . . . . . . 8 ((1st𝑃) Func (2nd𝑃)) ∈ V
1514mptex 7179 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
1614, 14mpoex 8037 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1715, 16op1std 7957 . . . . . 6 ((𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ → (1st ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)))
1813, 17syl 17 . . . . 5 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)))
1918dmeqd 5859 . . . 4 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (1st ‘(𝑃 −∘F 𝐹)) = dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)))
2019releqd 5733 . . 3 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (1st ‘(𝑃 −∘F 𝐹)) ↔ Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹))))
216, 20mpbiri 258 . 2 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (1st ‘(𝑃 −∘F 𝐹)))
22 rel0 5753 . . 3 Rel ∅
23 reldmprcof 49357 . . . . . . . . 9 Rel dom −∘F
2423ovprc 7407 . . . . . . . 8 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ∅)
2524fveq2d 6844 . . . . . . 7 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st ‘(𝑃 −∘F 𝐹)) = (1st ‘∅))
26 1st0 7953 . . . . . . 7 (1st ‘∅) = ∅
2725, 26eqtrdi 2780 . . . . . 6 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st ‘(𝑃 −∘F 𝐹)) = ∅)
2827dmeqd 5859 . . . . 5 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (1st ‘(𝑃 −∘F 𝐹)) = dom ∅)
29 dm0 5874 . . . . 5 dom ∅ = ∅
3028, 29eqtrdi 2780 . . . 4 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (1st ‘(𝑃 −∘F 𝐹)) = ∅)
3130releqd 5733 . . 3 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (1st ‘(𝑃 −∘F 𝐹)) ↔ Rel ∅))
3222, 31mpbiri 258 . 2 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (1st ‘(𝑃 −∘F 𝐹)))
3321, 32pm2.61i 182 1 Rel dom (1st ‘(𝑃 −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cop 4591  cmpt 5183  dom cdm 5631  ccom 5635  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946   Func cfunc 17796  func ccofu 17798   Nat cnat 17886   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-func 17800  df-prcof 49356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator