Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof2 Structured version   Visualization version   GIF version

Theorem reldmprcof2 49377
Description: The domain of the morphism part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof2 Rel dom (2nd ‘(𝑃 −∘F 𝐹))

Proof of Theorem reldmprcof2
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))
21reldmmpo 7483 . . 3 Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))
3 eqid 2729 . . . . . . 7 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
4 eqid 2729 . . . . . . 7 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
5 simpr 484 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝐹 ∈ V)
6 simpl 482 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝑃 ∈ V)
7 eqidd 2730 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st𝑃) = (1st𝑃))
8 eqidd 2730 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd𝑃) = (2nd𝑃))
93, 4, 5, 6, 7, 8prcofvalg 49371 . . . . . 6 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
10 ovex 7382 . . . . . . . 8 ((1st𝑃) Func (2nd𝑃)) ∈ V
1110mptex 7159 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
1210, 10mpoex 8014 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1311, 12op2ndd 7935 . . . . . 6 ((𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ → (2nd ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
149, 13syl 17 . . . . 5 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
1514dmeqd 5848 . . . 4 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (2nd ‘(𝑃 −∘F 𝐹)) = dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
1615releqd 5722 . . 3 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (2nd ‘(𝑃 −∘F 𝐹)) ↔ Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))))
172, 16mpbiri 258 . 2 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (2nd ‘(𝑃 −∘F 𝐹)))
18 rel0 5742 . . 3 Rel ∅
19 reldmprcof 49370 . . . . . . . . 9 Rel dom −∘F
2019ovprc 7387 . . . . . . . 8 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ∅)
2120fveq2d 6826 . . . . . . 7 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd ‘(𝑃 −∘F 𝐹)) = (2nd ‘∅))
22 2nd0 7931 . . . . . . 7 (2nd ‘∅) = ∅
2321, 22eqtrdi 2780 . . . . . 6 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd ‘(𝑃 −∘F 𝐹)) = ∅)
2423dmeqd 5848 . . . . 5 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (2nd ‘(𝑃 −∘F 𝐹)) = dom ∅)
25 dm0 5863 . . . . 5 dom ∅ = ∅
2624, 25eqtrdi 2780 . . . 4 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (2nd ‘(𝑃 −∘F 𝐹)) = ∅)
2726releqd 5722 . . 3 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (2nd ‘(𝑃 −∘F 𝐹)) ↔ Rel ∅))
2818, 27mpbiri 258 . 2 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (2nd ‘(𝑃 −∘F 𝐹)))
2917, 28pm2.61i 182 1 Rel dom (2nd ‘(𝑃 −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  cop 4583  cmpt 5173  dom cdm 5619  ccom 5623  Rel wrel 5624  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-prcof 49369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator