Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmprcof2 Structured version   Visualization version   GIF version

Theorem reldmprcof2 49493
Description: The domain of the morphism part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025.)
Assertion
Ref Expression
reldmprcof2 Rel dom (2nd ‘(𝑃 −∘F 𝐹))

Proof of Theorem reldmprcof2
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))
21reldmmpo 7480 . . 3 Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))
3 eqid 2731 . . . . . . 7 ((1st𝑃) Func (2nd𝑃)) = ((1st𝑃) Func (2nd𝑃))
4 eqid 2731 . . . . . . 7 ((1st𝑃) Nat (2nd𝑃)) = ((1st𝑃) Nat (2nd𝑃))
5 simpr 484 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝐹 ∈ V)
6 simpl 482 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → 𝑃 ∈ V)
7 eqidd 2732 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (1st𝑃) = (1st𝑃))
8 eqidd 2732 . . . . . . 7 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd𝑃) = (2nd𝑃))
93, 4, 5, 6, 7, 8prcofvalg 49487 . . . . . 6 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
10 ovex 7379 . . . . . . . 8 ((1st𝑃) Func (2nd𝑃)) ∈ V
1110mptex 7157 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)) ∈ V
1210, 10mpoex 8011 . . . . . . 7 (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1311, 12op2ndd 7932 . . . . . 6 ((𝑃 −∘F 𝐹) = ⟨(𝑘 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑘func 𝐹)), (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ → (2nd ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
149, 13syl 17 . . . . 5 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd ‘(𝑃 −∘F 𝐹)) = (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
1514dmeqd 5844 . . . 4 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (2nd ‘(𝑃 −∘F 𝐹)) = dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
1615releqd 5718 . . 3 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (2nd ‘(𝑃 −∘F 𝐹)) ↔ Rel dom (𝑘 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑙 ∈ ((1st𝑃) Func (2nd𝑃)) ↦ (𝑎 ∈ (𝑘((1st𝑃) Nat (2nd𝑃))𝑙) ↦ (𝑎 ∘ (1st𝐹))))))
172, 16mpbiri 258 . 2 ((𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (2nd ‘(𝑃 −∘F 𝐹)))
18 rel0 5738 . . 3 Rel ∅
19 reldmprcof 49486 . . . . . . . . 9 Rel dom −∘F
2019ovprc 7384 . . . . . . . 8 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (𝑃 −∘F 𝐹) = ∅)
2120fveq2d 6826 . . . . . . 7 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd ‘(𝑃 −∘F 𝐹)) = (2nd ‘∅))
22 2nd0 7928 . . . . . . 7 (2nd ‘∅) = ∅
2321, 22eqtrdi 2782 . . . . . 6 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (2nd ‘(𝑃 −∘F 𝐹)) = ∅)
2423dmeqd 5844 . . . . 5 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (2nd ‘(𝑃 −∘F 𝐹)) = dom ∅)
25 dm0 5859 . . . . 5 dom ∅ = ∅
2624, 25eqtrdi 2782 . . . 4 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → dom (2nd ‘(𝑃 −∘F 𝐹)) = ∅)
2726releqd 5718 . . 3 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → (Rel dom (2nd ‘(𝑃 −∘F 𝐹)) ↔ Rel ∅))
2818, 27mpbiri 258 . 2 (¬ (𝑃 ∈ V ∧ 𝐹 ∈ V) → Rel dom (2nd ‘(𝑃 −∘F 𝐹)))
2917, 28pm2.61i 182 1 Rel dom (2nd ‘(𝑃 −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cop 4579  cmpt 5170  dom cdm 5614  ccom 5618  Rel wrel 5619  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-prcof 49485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator