Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof1 Structured version   Visualization version   GIF version

Theorem prcof1 49499
Description: The object part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof1.k (𝜑𝐾 ∈ (𝐷 Func 𝐸))
prcof1.o (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
Assertion
Ref Expression
prcof1 (𝜑 → (𝑂𝐾) = (𝐾func 𝐹))

Proof of Theorem prcof1
Dummy variables 𝑎 𝑏 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcof1.o . . . . 5 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
21adantr 480 . . . 4 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
3 eqid 2731 . . . . . . 7 (𝐷 Func 𝐸) = (𝐷 Func 𝐸)
4 eqid 2731 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
5 prcof1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
65adantr 480 . . . . . . . . 9 ((𝜑𝐹 ∈ V) → 𝐾 ∈ (𝐷 Func 𝐸))
76func1st2nd 49187 . . . . . . . 8 ((𝜑𝐹 ∈ V) → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
87funcrcl2 49190 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐷 ∈ Cat)
97funcrcl3 49191 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐸 ∈ Cat)
10 simpr 484 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐹 ∈ V)
113, 4, 8, 9, 10prcofvala 49488 . . . . . 6 ((𝜑𝐹 ∈ V) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
1211fveq2d 6826 . . . . 5 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩))
13 ovex 7379 . . . . . . 7 (𝐷 Func 𝐸) ∈ V
1413mptex 7157 . . . . . 6 (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)) ∈ V
1513, 13mpoex 8011 . . . . . 6 (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1614, 15op1st 7929 . . . . 5 (1st ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹))
1712, 16eqtrdi 2782 . . . 4 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)))
182, 17eqtr3d 2768 . . 3 ((𝜑𝐹 ∈ V) → 𝑂 = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)))
19 simpr 484 . . . 4 (((𝜑𝐹 ∈ V) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
2019oveq1d 7361 . . 3 (((𝜑𝐹 ∈ V) ∧ 𝑘 = 𝐾) → (𝑘func 𝐹) = (𝐾func 𝐹))
21 ovexd 7381 . . 3 ((𝜑𝐹 ∈ V) → (𝐾func 𝐹) ∈ V)
2218, 20, 6, 21fvmptd 6936 . 2 ((𝜑𝐹 ∈ V) → (𝑂𝐾) = (𝐾func 𝐹))
23 0fv 6863 . . 3 (∅‘𝐾) = ∅
24 reldmprcof 49486 . . . . . . . 8 Rel dom −∘F
2524ovprc2 7386 . . . . . . 7 𝐹 ∈ V → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ∅)
2625fveq2d 6826 . . . . . 6 𝐹 ∈ V → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘∅))
27 1st0 7927 . . . . . 6 (1st ‘∅) = ∅
2826, 27eqtrdi 2782 . . . . 5 𝐹 ∈ V → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = ∅)
291, 28sylan9req 2787 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑂 = ∅)
3029fveq1d 6824 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂𝐾) = (∅‘𝐾))
31 df-cofu 17767 . . . . . 6 func = (𝑙 ∈ V, 𝑘 ∈ V ↦ ⟨((1st𝑙) ∘ (1st𝑘)), (𝑎 ∈ dom dom (2nd𝑘), 𝑏 ∈ dom dom (2nd𝑘) ↦ ((((1st𝑘)‘𝑎)(2nd𝑙)((1st𝑘)‘𝑏)) ∘ (𝑎(2nd𝑘)𝑏)))⟩)
3231reldmmpo 7480 . . . . 5 Rel dom ∘func
3332ovprc2 7386 . . . 4 𝐹 ∈ V → (𝐾func 𝐹) = ∅)
3433adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝐾func 𝐹) = ∅)
3523, 30, 343eqtr4a 2792 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂𝐾) = (𝐾func 𝐹))
3622, 35pm2.61dan 812 1 (𝜑 → (𝑂𝐾) = (𝐾func 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cop 4579  cmpt 5170  dom cdm 5614  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Catccat 17570   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17765  df-cofu 17767  df-prcof 49485
This theorem is referenced by:  prcofdiag  49505  lanrcl5  49746  ranrcl5  49751  lanup  49752  ranup  49753
  Copyright terms: Public domain W3C validator