Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof1 Structured version   Visualization version   GIF version

Theorem prcof1 49383
Description: The object part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof1.k (𝜑𝐾 ∈ (𝐷 Func 𝐸))
prcof1.o (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
Assertion
Ref Expression
prcof1 (𝜑 → (𝑂𝐾) = (𝐾func 𝐹))

Proof of Theorem prcof1
Dummy variables 𝑎 𝑏 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcof1.o . . . . 5 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
21adantr 480 . . . 4 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
3 eqid 2729 . . . . . . 7 (𝐷 Func 𝐸) = (𝐷 Func 𝐸)
4 eqid 2729 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
5 prcof1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
65adantr 480 . . . . . . . . 9 ((𝜑𝐹 ∈ V) → 𝐾 ∈ (𝐷 Func 𝐸))
76func1st2nd 49071 . . . . . . . 8 ((𝜑𝐹 ∈ V) → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
87funcrcl2 49074 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐷 ∈ Cat)
97funcrcl3 49075 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐸 ∈ Cat)
10 simpr 484 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐹 ∈ V)
113, 4, 8, 9, 10prcofvala 49372 . . . . . 6 ((𝜑𝐹 ∈ V) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
1211fveq2d 6826 . . . . 5 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩))
13 ovex 7382 . . . . . . 7 (𝐷 Func 𝐸) ∈ V
1413mptex 7159 . . . . . 6 (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)) ∈ V
1513, 13mpoex 8014 . . . . . 6 (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1614, 15op1st 7932 . . . . 5 (1st ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹))
1712, 16eqtrdi 2780 . . . 4 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)))
182, 17eqtr3d 2766 . . 3 ((𝜑𝐹 ∈ V) → 𝑂 = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)))
19 simpr 484 . . . 4 (((𝜑𝐹 ∈ V) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
2019oveq1d 7364 . . 3 (((𝜑𝐹 ∈ V) ∧ 𝑘 = 𝐾) → (𝑘func 𝐹) = (𝐾func 𝐹))
21 ovexd 7384 . . 3 ((𝜑𝐹 ∈ V) → (𝐾func 𝐹) ∈ V)
2218, 20, 6, 21fvmptd 6937 . 2 ((𝜑𝐹 ∈ V) → (𝑂𝐾) = (𝐾func 𝐹))
23 0fv 6864 . . 3 (∅‘𝐾) = ∅
24 reldmprcof 49370 . . . . . . . 8 Rel dom −∘F
2524ovprc2 7389 . . . . . . 7 𝐹 ∈ V → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ∅)
2625fveq2d 6826 . . . . . 6 𝐹 ∈ V → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘∅))
27 1st0 7930 . . . . . 6 (1st ‘∅) = ∅
2826, 27eqtrdi 2780 . . . . 5 𝐹 ∈ V → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = ∅)
291, 28sylan9req 2785 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑂 = ∅)
3029fveq1d 6824 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂𝐾) = (∅‘𝐾))
31 df-cofu 17767 . . . . . 6 func = (𝑙 ∈ V, 𝑘 ∈ V ↦ ⟨((1st𝑙) ∘ (1st𝑘)), (𝑎 ∈ dom dom (2nd𝑘), 𝑏 ∈ dom dom (2nd𝑘) ↦ ((((1st𝑘)‘𝑎)(2nd𝑙)((1st𝑘)‘𝑏)) ∘ (𝑎(2nd𝑘)𝑏)))⟩)
3231reldmmpo 7483 . . . . 5 Rel dom ∘func
3332ovprc2 7389 . . . 4 𝐹 ∈ V → (𝐾func 𝐹) = ∅)
3433adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝐾func 𝐹) = ∅)
3523, 30, 343eqtr4a 2790 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂𝐾) = (𝐾func 𝐹))
3622, 35pm2.61dan 812 1 (𝜑 → (𝑂𝐾) = (𝐾func 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  cop 4583  cmpt 5173  dom cdm 5619  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  Catccat 17570   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-func 17765  df-cofu 17767  df-prcof 49369
This theorem is referenced by:  prcofdiag  49389  lanrcl5  49630  ranrcl5  49635  lanup  49636  ranup  49637
  Copyright terms: Public domain W3C validator