| Step | Hyp | Ref
| Expression |
| 1 | | prcof1.o |
. . . . 5
⊢ (𝜑 → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = 𝑂) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ V) → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = 𝑂) |
| 3 | | eqid 2734 |
. . . . . . 7
⊢ (𝐷 Func 𝐸) = (𝐷 Func 𝐸) |
| 4 | | eqid 2734 |
. . . . . . 7
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
| 5 | | prcof1.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 7 | 6 | func1st2nd 48936 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 ∈ V) → (1st
‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 8 | 7 | funcrcl2 48937 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐷 ∈ Cat) |
| 9 | 7 | funcrcl3 48938 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐸 ∈ Cat) |
| 10 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝐹 ∈ V) |
| 11 | 3, 4, 8, 9, 10 | prcofvala 49151 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ V) → (〈𝐷, 𝐸〉 −∘F
𝐹) = 〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 12 | 11 | fveq2d 6877 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ V) → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = (1st ‘〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉)) |
| 13 | | ovex 7433 |
. . . . . . 7
⊢ (𝐷 Func 𝐸) ∈ V |
| 14 | 13 | mptex 7212 |
. . . . . 6
⊢ (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)) ∈ V |
| 15 | 13, 13 | mpoex 8073 |
. . . . . 6
⊢ (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) ∈ V |
| 16 | 14, 15 | op1st 7991 |
. . . . 5
⊢
(1st ‘〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)) |
| 17 | 12, 16 | eqtrdi 2785 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ V) → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹))) |
| 18 | 2, 17 | eqtr3d 2771 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ V) → 𝑂 = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹))) |
| 19 | | simpr 484 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ V) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) |
| 20 | 19 | oveq1d 7415 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ∈ V) ∧ 𝑘 = 𝐾) → (𝑘 ∘func 𝐹) = (𝐾 ∘func 𝐹)) |
| 21 | | ovexd 7435 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝐾 ∘func 𝐹) ∈ V) |
| 22 | 18, 20, 6, 21 | fvmptd 6990 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ V) → (𝑂‘𝐾) = (𝐾 ∘func 𝐹)) |
| 23 | | 0fv 6917 |
. . 3
⊢
(∅‘𝐾) =
∅ |
| 24 | | reldmprcof 49149 |
. . . . . . . 8
⊢ Rel dom
−∘F |
| 25 | 24 | ovprc2 7440 |
. . . . . . 7
⊢ (¬
𝐹 ∈ V →
(〈𝐷, 𝐸〉 −∘F
𝐹) =
∅) |
| 26 | 25 | fveq2d 6877 |
. . . . . 6
⊢ (¬
𝐹 ∈ V →
(1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹)) = (1st
‘∅)) |
| 27 | | 1st0 7989 |
. . . . . 6
⊢
(1st ‘∅) = ∅ |
| 28 | 26, 27 | eqtrdi 2785 |
. . . . 5
⊢ (¬
𝐹 ∈ V →
(1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹)) =
∅) |
| 29 | 1, 28 | sylan9req 2790 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑂 = ∅) |
| 30 | 29 | fveq1d 6875 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂‘𝐾) = (∅‘𝐾)) |
| 31 | | df-cofu 17860 |
. . . . . 6
⊢
∘func = (𝑙 ∈ V, 𝑘 ∈ V ↦ 〈((1st
‘𝑙) ∘
(1st ‘𝑘)),
(𝑎 ∈ dom dom
(2nd ‘𝑘),
𝑏 ∈ dom dom
(2nd ‘𝑘)
↦ ((((1st ‘𝑘)‘𝑎)(2nd ‘𝑙)((1st ‘𝑘)‘𝑏)) ∘ (𝑎(2nd ‘𝑘)𝑏)))〉) |
| 32 | 31 | reldmmpo 7536 |
. . . . 5
⊢ Rel dom
∘func |
| 33 | 32 | ovprc2 7440 |
. . . 4
⊢ (¬
𝐹 ∈ V → (𝐾 ∘func
𝐹) =
∅) |
| 34 | 33 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝐾 ∘func 𝐹) = ∅) |
| 35 | 23, 30, 34 | 3eqtr4a 2795 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂‘𝐾) = (𝐾 ∘func 𝐹)) |
| 36 | 22, 35 | pm2.61dan 812 |
1
⊢ (𝜑 → (𝑂‘𝐾) = (𝐾 ∘func 𝐹)) |