Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof1 Structured version   Visualization version   GIF version

Theorem prcof1 49367
Description: The object part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof1.k (𝜑𝐾 ∈ (𝐷 Func 𝐸))
prcof1.o (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
Assertion
Ref Expression
prcof1 (𝜑 → (𝑂𝐾) = (𝐾func 𝐹))

Proof of Theorem prcof1
Dummy variables 𝑎 𝑏 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcof1.o . . . . 5 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
21adantr 480 . . . 4 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑂)
3 eqid 2730 . . . . . . 7 (𝐷 Func 𝐸) = (𝐷 Func 𝐸)
4 eqid 2730 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
5 prcof1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
65adantr 480 . . . . . . . . 9 ((𝜑𝐹 ∈ V) → 𝐾 ∈ (𝐷 Func 𝐸))
76func1st2nd 49055 . . . . . . . 8 ((𝜑𝐹 ∈ V) → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
87funcrcl2 49058 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐷 ∈ Cat)
97funcrcl3 49059 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐸 ∈ Cat)
10 simpr 484 . . . . . . 7 ((𝜑𝐹 ∈ V) → 𝐹 ∈ V)
113, 4, 8, 9, 10prcofvala 49356 . . . . . 6 ((𝜑𝐹 ∈ V) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
1211fveq2d 6864 . . . . 5 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩))
13 ovex 7422 . . . . . . 7 (𝐷 Func 𝐸) ∈ V
1413mptex 7199 . . . . . 6 (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)) ∈ V
1513, 13mpoex 8060 . . . . . 6 (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1614, 15op1st 7978 . . . . 5 (1st ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘(𝐷 Nat 𝐸)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹))
1712, 16eqtrdi 2781 . . . 4 ((𝜑𝐹 ∈ V) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)))
182, 17eqtr3d 2767 . . 3 ((𝜑𝐹 ∈ V) → 𝑂 = (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)))
19 simpr 484 . . . 4 (((𝜑𝐹 ∈ V) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
2019oveq1d 7404 . . 3 (((𝜑𝐹 ∈ V) ∧ 𝑘 = 𝐾) → (𝑘func 𝐹) = (𝐾func 𝐹))
21 ovexd 7424 . . 3 ((𝜑𝐹 ∈ V) → (𝐾func 𝐹) ∈ V)
2218, 20, 6, 21fvmptd 6977 . 2 ((𝜑𝐹 ∈ V) → (𝑂𝐾) = (𝐾func 𝐹))
23 0fv 6904 . . 3 (∅‘𝐾) = ∅
24 reldmprcof 49354 . . . . . . . 8 Rel dom −∘F
2524ovprc2 7429 . . . . . . 7 𝐹 ∈ V → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ∅)
2625fveq2d 6864 . . . . . 6 𝐹 ∈ V → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘∅))
27 1st0 7976 . . . . . 6 (1st ‘∅) = ∅
2826, 27eqtrdi 2781 . . . . 5 𝐹 ∈ V → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = ∅)
291, 28sylan9req 2786 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ V) → 𝑂 = ∅)
3029fveq1d 6862 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂𝐾) = (∅‘𝐾))
31 df-cofu 17828 . . . . . 6 func = (𝑙 ∈ V, 𝑘 ∈ V ↦ ⟨((1st𝑙) ∘ (1st𝑘)), (𝑎 ∈ dom dom (2nd𝑘), 𝑏 ∈ dom dom (2nd𝑘) ↦ ((((1st𝑘)‘𝑎)(2nd𝑙)((1st𝑘)‘𝑏)) ∘ (𝑎(2nd𝑘)𝑏)))⟩)
3231reldmmpo 7525 . . . . 5 Rel dom ∘func
3332ovprc2 7429 . . . 4 𝐹 ∈ V → (𝐾func 𝐹) = ∅)
3433adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝐾func 𝐹) = ∅)
3523, 30, 343eqtr4a 2791 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ V) → (𝑂𝐾) = (𝐾func 𝐹))
3622, 35pm2.61dan 812 1 (𝜑 → (𝑂𝐾) = (𝐾func 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4298  cop 4597  cmpt 5190  dom cdm 5640  ccom 5644  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969  Catccat 17631   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   −∘F cprcof 49352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-func 17826  df-cofu 17828  df-prcof 49353
This theorem is referenced by:  prcofdiag  49373  lanrcl5  49614  ranrcl5  49619  lanup  49620  ranup  49621
  Copyright terms: Public domain W3C validator