![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version |
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7468 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 dom cdm 5688 Rel wrel 5693 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-dm 5698 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: elfvov1 7472 mapssfset 8889 mapdom2 9186 relexpsucrd 15068 relexpsucld 15069 relexpreld 15075 relexpdmd 15079 relexprnd 15083 relexpfldd 15085 relexpaddd 15089 dfrtrclrec2 15093 relexpindlem 15098 oveqprc 17225 setsnidOLD 17243 ressbasOLD 17280 resslemOLD 17287 ressinbas 17290 ressress 17293 oduval 18344 oduleval 18345 gsum0 18709 efmndbas 18896 oppgval 19377 oppgplusfval 19378 mgpval 20154 opprval 20351 srasca 21200 srascaOLD 21201 rlmsca2 21223 dsmmval 21771 dsmmfi 21775 resspsrbas 22011 mpfrcl 22126 psrbaspropd 22251 mplbaspropd 22253 evl1fval1 22350 qtopres 23721 fgabs 23902 tnglemOLD 24669 tngds 24683 tngdsOLD 24684 tcphval 25265 of0r 32694 erlval 33244 fracval 33285 resvsca 33335 resvlemOLD 33337 mapco2g 42701 mzpmfp 42734 mendbas 43168 naryfvalixp 48478 1aryenef 48494 2aryenef 48505 |
Copyright terms: Public domain | W3C validator |