![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version |
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7486 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 dom cdm 5700 Rel wrel 5705 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: elfvov1 7490 mapssfset 8909 mapdom2 9214 relexpsucrd 15082 relexpsucld 15083 relexpreld 15089 relexpdmd 15093 relexprnd 15097 relexpfldd 15099 relexpaddd 15103 dfrtrclrec2 15107 relexpindlem 15112 oveqprc 17239 setsnidOLD 17257 ressbasOLD 17294 resslemOLD 17301 ressinbas 17304 ressress 17307 oduval 18358 oduleval 18359 gsum0 18722 efmndbas 18906 oppgval 19387 oppgplusfval 19388 mgpval 20164 opprval 20361 srasca 21206 srascaOLD 21207 rlmsca2 21229 dsmmval 21777 dsmmfi 21781 resspsrbas 22017 mpfrcl 22132 psrbaspropd 22257 mplbaspropd 22259 evl1fval1 22356 qtopres 23727 fgabs 23908 tnglemOLD 24675 tngds 24689 tngdsOLD 24690 tcphval 25271 of0r 32696 erlval 33230 fracval 33271 resvsca 33321 resvlemOLD 33323 mapco2g 42670 mzpmfp 42703 mendbas 43141 naryfvalixp 48363 1aryenef 48379 2aryenef 48390 |
Copyright terms: Public domain | W3C validator |