| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7443 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 dom cdm 5654 Rel wrel 5659 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: elfvov1 7447 mapssfset 8865 mapdom2 9162 relexpsucrd 15052 relexpsucld 15053 relexpreld 15059 relexpdmd 15063 relexprnd 15067 relexpfldd 15069 relexpaddd 15073 dfrtrclrec2 15077 relexpindlem 15082 oveqprc 17211 ressinbas 17266 ressress 17268 oduval 18300 oduleval 18301 gsum0 18662 efmndbas 18849 oppgval 19330 oppgplusfval 19331 mgpval 20103 opprval 20298 srasca 21138 rlmsca2 21157 dsmmval 21694 dsmmfi 21698 resspsrbas 21934 mpfrcl 22043 psrbaspropd 22170 mplbaspropd 22172 evl1fval1 22269 qtopres 23636 fgabs 23817 tngds 24587 tcphval 25170 of0r 32656 erlval 33253 fracval 33298 resvsca 33348 mapco2g 42737 mzpmfp 42770 mendbas 43204 naryfvalixp 48609 1aryenef 48625 2aryenef 48636 resccat 49041 |
| Copyright terms: Public domain | W3C validator |