| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7384 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 dom cdm 5614 Rel wrel 5619 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: elfvov1 7388 mapssfset 8775 mapdom2 9061 relexpsucrd 14940 relexpsucld 14941 relexpreld 14947 relexpdmd 14951 relexprnd 14955 relexpfldd 14957 relexpaddd 14961 dfrtrclrec2 14965 relexpindlem 14970 oveqprc 17103 ressinbas 17156 ressress 17158 oduval 18194 oduleval 18195 gsum0 18592 efmndbas 18779 oppgval 19259 oppgplusfval 19260 mgpval 20061 opprval 20256 srasca 21114 rlmsca2 21133 dsmmval 21671 dsmmfi 21675 resspsrbas 21911 mpfrcl 22020 psrbaspropd 22147 mplbaspropd 22149 evl1fval1 22246 qtopres 23613 fgabs 23794 tngds 24563 tcphval 25145 of0r 32660 erlval 33225 fracval 33270 resvsca 33297 mapco2g 42755 mzpmfp 42788 mendbas 43221 naryfvalixp 48669 1aryenef 48685 2aryenef 48696 resccat 49114 |
| Copyright terms: Public domain | W3C validator |