| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7407 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 dom cdm 5631 Rel wrel 5636 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: elfvov1 7411 mapssfset 8801 mapdom2 9089 relexpsucrd 14975 relexpsucld 14976 relexpreld 14982 relexpdmd 14986 relexprnd 14990 relexpfldd 14992 relexpaddd 14996 dfrtrclrec2 15000 relexpindlem 15005 oveqprc 17138 ressinbas 17191 ressress 17193 oduval 18229 oduleval 18230 gsum0 18593 efmndbas 18780 oppgval 19261 oppgplusfval 19262 mgpval 20063 opprval 20258 srasca 21119 rlmsca2 21138 dsmmval 21676 dsmmfi 21680 resspsrbas 21916 mpfrcl 22025 psrbaspropd 22152 mplbaspropd 22154 evl1fval1 22251 qtopres 23618 fgabs 23799 tngds 24569 tcphval 25151 of0r 32652 erlval 33225 fracval 33270 resvsca 33297 mapco2g 42695 mzpmfp 42728 mendbas 43162 naryfvalixp 48611 1aryenef 48627 2aryenef 48638 resccat 49056 |
| Copyright terms: Public domain | W3C validator |