Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version |
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7313 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 dom cdm 5589 Rel wrel 5594 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: mapssfset 8639 mapdom2 8935 relexpsucrd 14744 relexpsucld 14745 relexpreld 14751 relexpdmd 14755 relexprnd 14759 relexpfldd 14761 relexpaddd 14765 dfrtrclrec2 14769 relexpindlem 14774 oveqprc 16893 setsnidOLD 16911 ressbasOLD 16948 resslemOLD 16952 ressinbas 16955 ressress 16958 oduval 18006 oduleval 18007 gsum0 18368 efmndbas 18510 oppgval 18951 oppgplusfval 18952 mgpval 19723 opprval 19863 srasca 20447 srascaOLD 20448 rlmsca2 20471 dsmmval 20941 dsmmfi 20945 resspsrbas 21184 mpfrcl 21295 psrbaspropd 21406 mplbaspropd 21408 evl1fval1 21497 qtopres 22849 fgabs 23030 tnglemOLD 23797 tngds 23811 tngdsOLD 23812 tcphval 24382 resvsca 31529 resvlemOLD 31531 mapco2g 40536 mzpmfp 40569 mendbas 41009 naryfvalixp 45975 1aryenef 45991 2aryenef 46002 |
Copyright terms: Public domain | W3C validator |