| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7387 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 dom cdm 5619 Rel wrel 5624 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: elfvov1 7391 mapssfset 8778 mapdom2 9065 relexpsucrd 14940 relexpsucld 14941 relexpreld 14947 relexpdmd 14951 relexprnd 14955 relexpfldd 14957 relexpaddd 14961 dfrtrclrec2 14965 relexpindlem 14970 oveqprc 17103 ressinbas 17156 ressress 17158 oduval 18194 oduleval 18195 gsum0 18558 efmndbas 18745 oppgval 19226 oppgplusfval 19227 mgpval 20028 opprval 20223 srasca 21084 rlmsca2 21103 dsmmval 21641 dsmmfi 21645 resspsrbas 21881 mpfrcl 21990 psrbaspropd 22117 mplbaspropd 22119 evl1fval1 22216 qtopres 23583 fgabs 23764 tngds 24534 tcphval 25116 of0r 32621 erlval 33198 fracval 33243 resvsca 33270 mapco2g 42687 mzpmfp 42720 mendbas 43153 naryfvalixp 48614 1aryenef 48630 2aryenef 48641 resccat 49059 |
| Copyright terms: Public domain | W3C validator |