| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7428 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 dom cdm 5641 Rel wrel 5646 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: elfvov1 7432 mapssfset 8827 mapdom2 9118 relexpsucrd 15006 relexpsucld 15007 relexpreld 15013 relexpdmd 15017 relexprnd 15021 relexpfldd 15023 relexpaddd 15027 dfrtrclrec2 15031 relexpindlem 15036 oveqprc 17169 ressinbas 17222 ressress 17224 oduval 18256 oduleval 18257 gsum0 18618 efmndbas 18805 oppgval 19286 oppgplusfval 19287 mgpval 20059 opprval 20254 srasca 21094 rlmsca2 21113 dsmmval 21650 dsmmfi 21654 resspsrbas 21890 mpfrcl 21999 psrbaspropd 22126 mplbaspropd 22128 evl1fval1 22225 qtopres 23592 fgabs 23773 tngds 24543 tcphval 25125 of0r 32609 erlval 33216 fracval 33261 resvsca 33311 mapco2g 42709 mzpmfp 42742 mendbas 43176 naryfvalixp 48622 1aryenef 48638 2aryenef 48649 resccat 49067 |
| Copyright terms: Public domain | W3C validator |