![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version |
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | 1 | con3i 152 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
4 | 3 | ovprc 6942 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
5 | 2, 4 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Vcvv 3414 ∅c0 4144 dom cdm 5342 Rel wrel 5347 (class class class)co 6905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-rel 5349 df-dm 5352 df-iota 6086 df-fv 6131 df-ov 6908 |
This theorem is referenced by: mapdom2 8400 setsnid 16278 ressbas 16293 resslem 16296 ressinbas 16299 ressress 16302 oduval 17483 oduleval 17484 gsum0 17631 oppgval 18127 oppgplusfval 18128 mgpval 18846 opprval 18978 srasca 19542 rlmsca2 19562 resspsrbas 19776 mpfrcl 19878 psrbaspropd 19965 mplbaspropd 19967 evl1fval1 20055 dsmmval 20441 dsmmbas2 20444 dsmmfi 20445 qtopres 21872 fgabs 22053 tnglem 22814 tngds 22822 tcphval 23386 resvsca 30375 resvlem 30376 mapco2g 38121 mzpmfp 38154 mendbas 38597 |
Copyright terms: Public domain | W3C validator |