Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version |
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7293 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 dom cdm 5580 Rel wrel 5585 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: mapssfset 8597 mapdom2 8884 relexpsucrd 14672 relexpsucld 14673 relexpreld 14679 relexpdmd 14683 relexprnd 14687 relexpfldd 14689 relexpaddd 14693 dfrtrclrec2 14697 relexpindlem 14702 oveqprc 16821 setsnidOLD 16839 ressbasOLD 16874 resslemOLD 16878 ressinbas 16881 ressress 16884 oduval 17922 oduleval 17923 gsum0 18283 efmndbas 18425 oppgval 18866 oppgplusfval 18867 mgpval 19638 opprval 19778 srasca 20362 rlmsca2 20384 dsmmval 20851 dsmmfi 20855 resspsrbas 21094 mpfrcl 21205 psrbaspropd 21316 mplbaspropd 21318 evl1fval1 21407 qtopres 22757 fgabs 22938 tnglemOLD 23703 tngds 23717 tngdsOLD 23718 tcphval 24287 resvsca 31431 resvlemOLD 31433 mapco2g 40452 mzpmfp 40485 mendbas 40925 naryfvalixp 45863 1aryenef 45879 2aryenef 45890 |
Copyright terms: Public domain | W3C validator |