| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7425 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 dom cdm 5638 Rel wrel 5643 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: elfvov1 7429 mapssfset 8824 mapdom2 9112 relexpsucrd 14999 relexpsucld 15000 relexpreld 15006 relexpdmd 15010 relexprnd 15014 relexpfldd 15016 relexpaddd 15020 dfrtrclrec2 15024 relexpindlem 15029 oveqprc 17162 ressinbas 17215 ressress 17217 oduval 18249 oduleval 18250 gsum0 18611 efmndbas 18798 oppgval 19279 oppgplusfval 19280 mgpval 20052 opprval 20247 srasca 21087 rlmsca2 21106 dsmmval 21643 dsmmfi 21647 resspsrbas 21883 mpfrcl 21992 psrbaspropd 22119 mplbaspropd 22121 evl1fval1 22218 qtopres 23585 fgabs 23766 tngds 24536 tcphval 25118 of0r 32602 erlval 33209 fracval 33254 resvsca 33304 mapco2g 42702 mzpmfp 42735 mendbas 43169 naryfvalixp 48618 1aryenef 48634 2aryenef 48645 resccat 49063 |
| Copyright terms: Public domain | W3C validator |