MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resopab2 Structured version   Visualization version   GIF version

Theorem resopab2 6045
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.)
Assertion
Ref Expression
resopab2 (𝐴𝐵 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝜑)} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem resopab2
StepHypRef Expression
1 resopab 6043 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝜑)} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴 ∧ (𝑥𝐵𝜑))}
2 ssel 3973 . . . . . 6 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
32pm4.71d 560 . . . . 5 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐵)))
43anbi1d 629 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑)))
5 anass 467 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
64, 5bitr2di 287 . . 3 (𝐴𝐵 → ((𝑥𝐴 ∧ (𝑥𝐵𝜑)) ↔ (𝑥𝐴𝜑)))
76opabbidv 5219 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴 ∧ (𝑥𝐵𝜑))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
81, 7eqtrid 2778 1 (𝐴𝐵 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝜑)} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3947  {copab 5215  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-opab 5216  df-xp 5688  df-rel 5689  df-res 5694
This theorem is referenced by:  resmpt  6046  marypha2lem4  9481
  Copyright terms: Public domain W3C validator