MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem4 Structured version   Visualization version   GIF version

Theorem marypha2lem4 9433
Description: Lemma for marypha2 9434. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑇𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . . . . . 6 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
21marypha2lem2 9431 . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
32imaeq1i 6057 . . . 4 (𝑇𝑋) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} “ 𝑋)
4 df-ima 5690 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} “ 𝑋) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋)
53, 4eqtri 2761 . . 3 (𝑇𝑋) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋)
6 resopab2 6037 . . . . . 6 (𝑋𝐴 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))})
76adantl 483 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))})
87rneqd 5938 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))})
9 rnopab 5954 . . . . 5 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))} = {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))}
10 df-rex 3072 . . . . . . . . 9 (∃𝑥𝑋 𝑦 ∈ (𝐹𝑥) ↔ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥)))
1110bicomi 223 . . . . . . . 8 (∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥)) ↔ ∃𝑥𝑋 𝑦 ∈ (𝐹𝑥))
1211abbii 2803 . . . . . . 7 {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))} = {𝑦 ∣ ∃𝑥𝑋 𝑦 ∈ (𝐹𝑥)}
13 df-iun 5000 . . . . . . 7 𝑥𝑋 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝑋 𝑦 ∈ (𝐹𝑥)}
1412, 13eqtr4i 2764 . . . . . 6 {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))} = 𝑥𝑋 (𝐹𝑥)
1514a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))} = 𝑥𝑋 (𝐹𝑥))
169, 15eqtrid 2785 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))} = 𝑥𝑋 (𝐹𝑥))
178, 16eqtrd 2773 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = 𝑥𝑋 (𝐹𝑥))
185, 17eqtrid 2785 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑇𝑋) = 𝑥𝑋 (𝐹𝑥))
19 fnfun 6650 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2019adantr 482 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → Fun 𝐹)
21 funiunfv 7247 . . 3 (Fun 𝐹 𝑥𝑋 (𝐹𝑥) = (𝐹𝑋))
2220, 21syl 17 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑥𝑋 (𝐹𝑥) = (𝐹𝑋))
2318, 22eqtrd 2773 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑇𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wrex 3071  wss 3949  {csn 4629   cuni 4909   ciun 4998  {copab 5211   × cxp 5675  ran crn 5678  cres 5679  cima 5680  Fun wfun 6538   Fn wfn 6539  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by:  marypha2  9434
  Copyright terms: Public domain W3C validator