| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resopab | Structured version Visualization version GIF version | ||
| Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
| Ref | Expression |
|---|---|
| resopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5677 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) | |
| 2 | df-xp 5671 | . . . . . 6 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} | |
| 3 | vex 3467 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 3 | biantru 529 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)) |
| 5 | 4 | opabbii 5190 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} |
| 6 | 2, 5 | eqtr4i 2760 | . . . . 5 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} |
| 7 | 6 | ineq2i 4197 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) |
| 8 | incom 4189 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 9 | 7, 8 | eqtri 2757 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 10 | inopab 5819 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 11 | 9, 10 | eqtri 2757 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 12 | 1, 11 | eqtri 2757 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 {copab 5185 × cxp 5663 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-xp 5671 df-rel 5672 df-res 5677 |
| This theorem is referenced by: resopab2 6034 opabresid 6048 mptpreima 6238 isarep2 6638 resoprab 7533 elrnmpores 7553 df1st2 8105 df2nd2 8106 imaopab 42229 |
| Copyright terms: Public domain | W3C validator |