| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resopab | Structured version Visualization version GIF version | ||
| Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
| Ref | Expression |
|---|---|
| resopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5633 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) | |
| 2 | df-xp 5627 | . . . . . 6 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} | |
| 3 | vex 3441 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 3 | biantru 529 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)) |
| 5 | 4 | opabbii 5162 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} |
| 6 | 2, 5 | eqtr4i 2759 | . . . . 5 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} |
| 7 | 6 | ineq2i 4166 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) |
| 8 | incom 4158 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 9 | 7, 8 | eqtri 2756 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 10 | inopab 5775 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 11 | 9, 10 | eqtri 2756 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 12 | 1, 11 | eqtri 2756 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 {copab 5157 × cxp 5619 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 df-xp 5627 df-rel 5628 df-res 5633 |
| This theorem is referenced by: resopab2 5991 opabresid 6005 mptpreima 6192 isarep2 6578 resoprab 7472 elrnmpores 7492 df1st2 8036 df2nd2 8037 dfblockliftfix2 38759 imaopab 42352 |
| Copyright terms: Public domain | W3C validator |