| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resopab | Structured version Visualization version GIF version | ||
| Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
| Ref | Expression |
|---|---|
| resopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5652 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) | |
| 2 | df-xp 5646 | . . . . . 6 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} | |
| 3 | vex 3454 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 3 | biantru 529 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)) |
| 5 | 4 | opabbii 5176 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} |
| 6 | 2, 5 | eqtr4i 2756 | . . . . 5 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} |
| 7 | 6 | ineq2i 4182 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) |
| 8 | incom 4174 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 9 | 7, 8 | eqtri 2753 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 10 | inopab 5794 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 11 | 9, 10 | eqtri 2753 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 12 | 1, 11 | eqtri 2753 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3915 {copab 5171 × cxp 5638 ↾ cres 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5172 df-xp 5646 df-rel 5647 df-res 5652 |
| This theorem is referenced by: resopab2 6009 opabresid 6023 mptpreima 6213 isarep2 6610 resoprab 7509 elrnmpores 7529 df1st2 8079 df2nd2 8080 imaopab 42214 |
| Copyright terms: Public domain | W3C validator |