MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resopab Structured version   Visualization version   GIF version

Theorem resopab 6007
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 5652 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V))
2 df-xp 5646 . . . . . 6 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
3 vex 3454 . . . . . . . 8 𝑦 ∈ V
43biantru 529 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴𝑦 ∈ V))
54opabbii 5176 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
62, 5eqtr4i 2756 . . . . 5 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}
76ineq2i 4182 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴})
8 incom 4174 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
97, 8eqtri 2753 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
10 inopab 5794 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
119, 10eqtri 2753 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
121, 11eqtri 2753 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3915  {copab 5171   × cxp 5638  cres 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5172  df-xp 5646  df-rel 5647  df-res 5652
This theorem is referenced by:  resopab2  6009  opabresid  6023  mptpreima  6213  isarep2  6610  resoprab  7509  elrnmpores  7529  df1st2  8079  df2nd2  8080  imaopab  42214
  Copyright terms: Public domain W3C validator