![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resopab | Structured version Visualization version GIF version |
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
Ref | Expression |
---|---|
resopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) | |
2 | df-xp 5706 | . . . . . 6 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} | |
3 | vex 3492 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | biantru 529 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)) |
5 | 4 | opabbii 5233 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} |
6 | 2, 5 | eqtr4i 2771 | . . . . 5 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} |
7 | 6 | ineq2i 4238 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) |
8 | incom 4230 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
9 | 7, 8 | eqtri 2768 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
10 | inopab 5853 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
11 | 9, 10 | eqtri 2768 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
12 | 1, 11 | eqtri 2768 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 {copab 5228 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: resopab2 6067 opabresid 6081 mptpreima 6271 isarep2 6671 resoprab 7570 elrnmpores 7590 df1st2 8141 df2nd2 8142 imaopab 42226 |
Copyright terms: Public domain | W3C validator |