MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resopab Structured version   Visualization version   GIF version

Theorem resopab 5989
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 5633 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V))
2 df-xp 5627 . . . . . 6 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
3 vex 3441 . . . . . . . 8 𝑦 ∈ V
43biantru 529 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴𝑦 ∈ V))
54opabbii 5162 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
62, 5eqtr4i 2759 . . . . 5 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}
76ineq2i 4166 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴})
8 incom 4158 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
97, 8eqtri 2756 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
10 inopab 5775 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
119, 10eqtri 2756 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
121, 11eqtri 2756 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  {copab 5157   × cxp 5619  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5158  df-xp 5627  df-rel 5628  df-res 5633
This theorem is referenced by:  resopab2  5991  opabresid  6005  mptpreima  6192  isarep2  6578  resoprab  7472  elrnmpores  7492  df1st2  8036  df2nd2  8037  dfblockliftfix2  38759  imaopab  42352
  Copyright terms: Public domain W3C validator