MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpigen Structured version   Visualization version   GIF version

Theorem lpigen 20022
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
lpigen.u 𝑈 = (LIdeal‘𝑅)
lpigen.p 𝑃 = (LPIdeal‘𝑅)
lpigen.d = (∥r𝑅)
Assertion
Ref Expression
lpigen ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐼,𝑦   𝑥,𝑈,𝑦   𝑥,𝑃,𝑦   𝑥, ,𝑦

Proof of Theorem lpigen
StepHypRef Expression
1 lpigen.p . . . 4 𝑃 = (LPIdeal‘𝑅)
2 eqid 2824 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
3 eqid 2824 . . . 4 (Base‘𝑅) = (Base‘𝑅)
41, 2, 3islpidl 20012 . . 3 (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
54adantr 484 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
6 lpigen.u . . . . 5 𝑈 = (LIdeal‘𝑅)
7 lpigen.d . . . . 5 = (∥r𝑅)
83, 6, 2, 7lidldvgen 20021 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
983expa 1115 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
109rexbidva 3289 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
11 simpr 488 . . . 4 ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) → (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))
123, 6lidlss 19976 . . . . . . . 8 (𝐼𝑈𝐼 ⊆ (Base‘𝑅))
1312adantl 485 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ⊆ (Base‘𝑅))
1413sseld 3951 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑥𝐼𝑥 ∈ (Base‘𝑅)))
1514adantrd 495 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → 𝑥 ∈ (Base‘𝑅)))
1615ancrd 555 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))))
1711, 16impbid2 229 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
1817rexbidv2 3288 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
195, 10, 183bitrd 308 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  wrex 3134  wss 3919  {csn 4549   class class class wbr 5052  cfv 6343  Basecbs 16479  Ringcrg 19293  rcdsr 19384  LIdealclidl 19935  RSpancrsp 19936  LPIdealclpidl 20007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-mgp 19236  df-ur 19248  df-ring 19295  df-dvdsr 19387  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-lpidl 20009
This theorem is referenced by:  zringlpir  20629
  Copyright terms: Public domain W3C validator