![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lpigen | Structured version Visualization version GIF version |
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
Ref | Expression |
---|---|
lpigen.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lpigen.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpigen.d | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
lpigen | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpigen.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
2 | eqid 2726 | . . . 4 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
3 | eqid 2726 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | 1, 2, 3 | islpidl 21308 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
5 | 4 | adantr 479 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
6 | lpigen.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
7 | lpigen.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
8 | 3, 6, 2, 7 | lidldvgen 21317 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
9 | 8 | 3expa 1115 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
10 | 9 | rexbidva 3167 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
11 | simpr 483 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) → (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) | |
12 | 3, 6 | lidlss 21195 | . . . . . . . 8 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
13 | 12 | adantl 480 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
14 | 13 | sseld 3978 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑥 ∈ 𝐼 → 𝑥 ∈ (Base‘𝑅))) |
15 | 14 | adantrd 490 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → 𝑥 ∈ (Base‘𝑅))) |
16 | 15 | ancrd 550 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)))) |
17 | 11, 16 | impbid2 225 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
18 | 17 | rexbidv2 3165 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
19 | 5, 10, 18 | 3bitrd 304 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 ⊆ wss 3947 {csn 4624 class class class wbr 5144 ‘cfv 6544 Basecbs 17206 Ringcrg 20210 ∥rcdsr 20330 LIdealclidl 21189 RSpancrsp 21190 LPIdealclpidl 21303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-sca 17275 df-vsca 17276 df-ip 17277 df-0g 17449 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-mgp 20112 df-ur 20159 df-ring 20212 df-dvdsr 20333 df-subrg 20547 df-lmod 20832 df-lss 20903 df-lsp 20943 df-sra 21145 df-rgmod 21146 df-lidl 21191 df-rsp 21192 df-lpidl 21305 |
This theorem is referenced by: zringlpir 21451 |
Copyright terms: Public domain | W3C validator |