| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lpigen | Structured version Visualization version GIF version | ||
| Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| Ref | Expression |
|---|---|
| lpigen.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| lpigen.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
| lpigen.d | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| lpigen | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpigen.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
| 2 | eqid 2735 | . . . 4 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 3 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 1, 2, 3 | islpidl 21286 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
| 6 | lpigen.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 7 | lpigen.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 8 | 3, 6, 2, 7 | lidldvgen 21295 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 9 | 8 | 3expa 1118 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 10 | 9 | rexbidva 3162 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) → (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) | |
| 12 | 3, 6 | lidlss 21173 | . . . . . . . 8 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
| 14 | 13 | sseld 3957 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑥 ∈ 𝐼 → 𝑥 ∈ (Base‘𝑅))) |
| 15 | 14 | adantrd 491 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → 𝑥 ∈ (Base‘𝑅))) |
| 16 | 15 | ancrd 551 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)))) |
| 17 | 11, 16 | impbid2 226 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 18 | 17 | rexbidv2 3160 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
| 19 | 5, 10, 18 | 3bitrd 305 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 {csn 4601 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 Ringcrg 20193 ∥rcdsr 20314 LIdealclidl 21167 RSpancrsp 21168 LPIdealclpidl 21281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-mgp 20101 df-ur 20142 df-ring 20195 df-dvdsr 20317 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-lpidl 21283 |
| This theorem is referenced by: zringlpir 21428 |
| Copyright terms: Public domain | W3C validator |