MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpigen Structured version   Visualization version   GIF version

Theorem lpigen 20299
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
lpigen.u 𝑈 = (LIdeal‘𝑅)
lpigen.p 𝑃 = (LPIdeal‘𝑅)
lpigen.d = (∥r𝑅)
Assertion
Ref Expression
lpigen ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐼,𝑦   𝑥,𝑈,𝑦   𝑥,𝑃,𝑦   𝑥, ,𝑦

Proof of Theorem lpigen
StepHypRef Expression
1 lpigen.p . . . 4 𝑃 = (LPIdeal‘𝑅)
2 eqid 2737 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
3 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
41, 2, 3islpidl 20289 . . 3 (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
54adantr 484 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
6 lpigen.u . . . . 5 𝑈 = (LIdeal‘𝑅)
7 lpigen.d . . . . 5 = (∥r𝑅)
83, 6, 2, 7lidldvgen 20298 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
983expa 1120 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
109rexbidva 3220 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
11 simpr 488 . . . 4 ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) → (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))
123, 6lidlss 20253 . . . . . . . 8 (𝐼𝑈𝐼 ⊆ (Base‘𝑅))
1312adantl 485 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ⊆ (Base‘𝑅))
1413sseld 3905 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑥𝐼𝑥 ∈ (Base‘𝑅)))
1514adantrd 495 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → 𝑥 ∈ (Base‘𝑅)))
1615ancrd 555 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))))
1711, 16impbid2 229 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
1817rexbidv2 3219 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
195, 10, 183bitrd 308 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  wss 3871  {csn 4546   class class class wbr 5058  cfv 6385  Basecbs 16765  Ringcrg 19567  rcdsr 19661  LIdealclidl 20212  RSpancrsp 20213  LPIdealclpidl 20284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-er 8396  df-en 8632  df-dom 8633  df-sdom 8634  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-nn 11836  df-2 11898  df-3 11899  df-4 11900  df-5 11901  df-6 11902  df-7 11903  df-8 11904  df-sets 16722  df-slot 16740  df-ndx 16750  df-base 16766  df-ress 16790  df-plusg 16820  df-mulr 16821  df-sca 16823  df-vsca 16824  df-ip 16825  df-0g 16951  df-mgm 18119  df-sgrp 18168  df-mnd 18179  df-grp 18373  df-minusg 18374  df-sbg 18375  df-subg 18545  df-mgp 19510  df-ur 19522  df-ring 19569  df-dvdsr 19664  df-subrg 19803  df-lmod 19906  df-lss 19974  df-lsp 20014  df-sra 20214  df-rgmod 20215  df-lidl 20216  df-rsp 20217  df-lpidl 20286
This theorem is referenced by:  zringlpir  20459
  Copyright terms: Public domain W3C validator