| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lpigen | Structured version Visualization version GIF version | ||
| Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| Ref | Expression |
|---|---|
| lpigen.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| lpigen.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
| lpigen.d | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| lpigen | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpigen.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
| 2 | eqid 2733 | . . . 4 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 1, 2, 3 | islpidl 21271 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
| 6 | lpigen.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 7 | lpigen.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 8 | 3, 6, 2, 7 | lidldvgen 21280 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 9 | 8 | 3expa 1118 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 10 | 9 | rexbidva 3155 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) → (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) | |
| 12 | 3, 6 | lidlss 21158 | . . . . . . . 8 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
| 14 | 13 | sseld 3929 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑥 ∈ 𝐼 → 𝑥 ∈ (Base‘𝑅))) |
| 15 | 14 | adantrd 491 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → 𝑥 ∈ (Base‘𝑅))) |
| 16 | 15 | ancrd 551 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)))) |
| 17 | 11, 16 | impbid2 226 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
| 18 | 17 | rexbidv2 3153 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
| 19 | 5, 10, 18 | 3bitrd 305 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 {csn 4577 class class class wbr 5095 ‘cfv 6489 Basecbs 17127 Ringcrg 20159 ∥rcdsr 20281 LIdealclidl 21152 RSpancrsp 21153 LPIdealclpidl 21266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-mgp 20067 df-ur 20108 df-ring 20161 df-dvdsr 20284 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-sra 21116 df-rgmod 21117 df-lidl 21154 df-rsp 21155 df-lpidl 21268 |
| This theorem is referenced by: zringlpir 21413 |
| Copyright terms: Public domain | W3C validator |