Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lpigen | Structured version Visualization version GIF version |
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
Ref | Expression |
---|---|
lpigen.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lpigen.p | ⊢ 𝑃 = (LPIdeal‘𝑅) |
lpigen.d | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
lpigen | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpigen.p | . . . 4 ⊢ 𝑃 = (LPIdeal‘𝑅) | |
2 | eqid 2737 | . . . 4 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
3 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | 1, 2, 3 | islpidl 20289 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
5 | 4 | adantr 484 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}))) |
6 | lpigen.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
7 | lpigen.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
8 | 3, 6, 2, 7 | lidldvgen 20298 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
9 | 8 | 3expa 1120 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
10 | 9 | rexbidva 3220 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
11 | simpr 488 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) → (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) | |
12 | 3, 6 | lidlss 20253 | . . . . . . . 8 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
13 | 12 | adantl 485 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
14 | 13 | sseld 3905 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑥 ∈ 𝐼 → 𝑥 ∈ (Base‘𝑅))) |
15 | 14 | adantrd 495 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → 𝑥 ∈ (Base‘𝑅))) |
16 | 15 | ancrd 555 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)))) |
17 | 11, 16 | impbid2 229 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) ↔ (𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦))) |
18 | 17 | rexbidv2 3219 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦) ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
19 | 5, 10, 18 | 3bitrd 308 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3871 {csn 4546 class class class wbr 5058 ‘cfv 6385 Basecbs 16765 Ringcrg 19567 ∥rcdsr 19661 LIdealclidl 20212 RSpancrsp 20213 LPIdealclpidl 20284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-sca 16823 df-vsca 16824 df-ip 16825 df-0g 16951 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-grp 18373 df-minusg 18374 df-sbg 18375 df-subg 18545 df-mgp 19510 df-ur 19522 df-ring 19569 df-dvdsr 19664 df-subrg 19803 df-lmod 19906 df-lss 19974 df-lsp 20014 df-sra 20214 df-rgmod 20215 df-lidl 20216 df-rsp 20217 df-lpidl 20286 |
This theorem is referenced by: zringlpir 20459 |
Copyright terms: Public domain | W3C validator |