| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexuz | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
| Ref | Expression |
|---|---|
| rexuz | ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12861 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ∧ 𝜑))) |
| 3 | anass 468 | . . 3 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
| 4 | 2, 3 | bitrdi 287 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
| 5 | 4 | rexbidv2 3161 | 1 ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 ≤ cle 11275 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-neg 11474 df-z 12594 df-uz 12858 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |