![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexuz | Structured version Visualization version GIF version |
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
rexuz | ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 12808 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ∧ 𝜑))) |
3 | anass 469 | . . 3 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
4 | 2, 3 | bitrdi 286 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
5 | 4 | rexbidv2 3173 | 1 ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3069 class class class wbr 5141 ‘cfv 6532 ≤ cle 11231 ℤcz 12540 ℤ≥cuz 12804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-cnex 11148 ax-resscn 11149 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fv 6540 df-ov 7396 df-neg 11429 df-z 12541 df-uz 12805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |