| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexuz | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
| Ref | Expression |
|---|---|
| rexuz | ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12882 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ∧ 𝜑))) |
| 3 | anass 468 | . . 3 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
| 4 | 2, 3 | bitrdi 287 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
| 5 | 4 | rexbidv2 3175 | 1 ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 ≤ cle 11296 ℤcz 12613 ℤ≥cuz 12878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-cnex 11211 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-neg 11495 df-z 12614 df-uz 12879 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |