MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuz Structured version   Visualization version   GIF version

Theorem rexuz 12027
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
rexuz (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem rexuz
StepHypRef Expression
1 eluz1 11979 . . . 4 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
21anbi1d 623 . . 3 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀𝑛) ∧ 𝜑)))
3 anass 462 . . 3 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀𝑛𝜑)))
42, 3syl6bb 279 . 2 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀𝑛𝜑))))
54rexbidv2 3258 1 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2164  wrex 3118   class class class wbr 4875  cfv 6127  cle 10399  cz 11711  cuz 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-cnex 10315  ax-resscn 10316
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-ov 6913  df-neg 10595  df-z 11712  df-uz 11976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator