Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg2 Structured version   Visualization version   GIF version

Theorem mrefg2 41445
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrClsβ€˜πΆ)
Assertion
Ref Expression
mrefg2 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (βˆƒπ‘” ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (πΉβ€˜π‘”) ↔ βˆƒπ‘” ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (πΉβ€˜π‘”)))
Distinct variable groups:   𝐢,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg2
StepHypRef Expression
1 isnacs.f . . . . . . . . 9 𝐹 = (mrClsβ€˜πΆ)
21mrcssid 17561 . . . . . . . 8 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑔 βŠ† 𝑋) β†’ 𝑔 βŠ† (πΉβ€˜π‘”))
3 simpr 486 . . . . . . . . 9 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑔 βŠ† (πΉβ€˜π‘”)) β†’ 𝑔 βŠ† (πΉβ€˜π‘”))
41mrcssv 17558 . . . . . . . . . 10 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (πΉβ€˜π‘”) βŠ† 𝑋)
54adantr 482 . . . . . . . . 9 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑔 βŠ† (πΉβ€˜π‘”)) β†’ (πΉβ€˜π‘”) βŠ† 𝑋)
63, 5sstrd 3993 . . . . . . . 8 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑔 βŠ† (πΉβ€˜π‘”)) β†’ 𝑔 βŠ† 𝑋)
72, 6impbida 800 . . . . . . 7 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (𝑔 βŠ† 𝑋 ↔ 𝑔 βŠ† (πΉβ€˜π‘”)))
8 vex 3479 . . . . . . . 8 𝑔 ∈ V
98elpw 4607 . . . . . . 7 (𝑔 ∈ 𝒫 𝑋 ↔ 𝑔 βŠ† 𝑋)
108elpw 4607 . . . . . . 7 (𝑔 ∈ 𝒫 (πΉβ€˜π‘”) ↔ 𝑔 βŠ† (πΉβ€˜π‘”))
117, 9, 103bitr4g 314 . . . . . 6 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (𝑔 ∈ 𝒫 𝑋 ↔ 𝑔 ∈ 𝒫 (πΉβ€˜π‘”)))
1211anbi1d 631 . . . . 5 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ ((𝑔 ∈ 𝒫 𝑋 ∧ 𝑔 ∈ Fin) ↔ (𝑔 ∈ 𝒫 (πΉβ€˜π‘”) ∧ 𝑔 ∈ Fin)))
13 elin 3965 . . . . 5 (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑔 ∈ 𝒫 𝑋 ∧ 𝑔 ∈ Fin))
14 elin 3965 . . . . 5 (𝑔 ∈ (𝒫 (πΉβ€˜π‘”) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (πΉβ€˜π‘”) ∧ 𝑔 ∈ Fin))
1512, 13, 143bitr4g 314 . . . 4 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (πΉβ€˜π‘”) ∩ Fin)))
16 pweq 4617 . . . . . . 7 (𝑆 = (πΉβ€˜π‘”) β†’ 𝒫 𝑆 = 𝒫 (πΉβ€˜π‘”))
1716ineq1d 4212 . . . . . 6 (𝑆 = (πΉβ€˜π‘”) β†’ (𝒫 𝑆 ∩ Fin) = (𝒫 (πΉβ€˜π‘”) ∩ Fin))
1817eleq2d 2820 . . . . 5 (𝑆 = (πΉβ€˜π‘”) β†’ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (πΉβ€˜π‘”) ∩ Fin)))
1918bibi2d 343 . . . 4 (𝑆 = (πΉβ€˜π‘”) β†’ ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (πΉβ€˜π‘”) ∩ Fin))))
2015, 19syl5ibrcom 246 . . 3 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (𝑆 = (πΉβ€˜π‘”) β†’ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin))))
2120pm5.32rd 579 . 2 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑆 = (πΉβ€˜π‘”)) ↔ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑆 = (πΉβ€˜π‘”))))
2221rexbidv2 3175 1 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (βˆƒπ‘” ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (πΉβ€˜π‘”) ↔ βˆƒπ‘” ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (πΉβ€˜π‘”)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  β€˜cfv 6544  Fincfn 8939  Moorecmre 17526  mrClscmrc 17527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-mre 17530  df-mrc 17531
This theorem is referenced by:  mrefg3  41446  isnacs3  41448
  Copyright terms: Public domain W3C validator