Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg2 Structured version   Visualization version   GIF version

Theorem mrefg2 42702
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrefg2 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg2
StepHypRef Expression
1 isnacs.f . . . . . . . . 9 𝐹 = (mrCls‘𝐶)
21mrcssid 17585 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → 𝑔 ⊆ (𝐹𝑔))
3 simpr 484 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔 ⊆ (𝐹𝑔))
41mrcssv 17582 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑔) ⊆ 𝑋)
54adantr 480 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → (𝐹𝑔) ⊆ 𝑋)
63, 5sstrd 3960 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔𝑋)
72, 6impbida 800 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝑔𝑋𝑔 ⊆ (𝐹𝑔)))
8 vex 3454 . . . . . . . 8 𝑔 ∈ V
98elpw 4570 . . . . . . 7 (𝑔 ∈ 𝒫 𝑋𝑔𝑋)
108elpw 4570 . . . . . . 7 (𝑔 ∈ 𝒫 (𝐹𝑔) ↔ 𝑔 ⊆ (𝐹𝑔))
117, 9, 103bitr4g 314 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ 𝒫 𝑋𝑔 ∈ 𝒫 (𝐹𝑔)))
1211anbi1d 631 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin)))
13 elin 3933 . . . . 5 (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin))
14 elin 3933 . . . . 5 (𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin))
1512, 13, 143bitr4g 314 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
16 pweq 4580 . . . . . . 7 (𝑆 = (𝐹𝑔) → 𝒫 𝑆 = 𝒫 (𝐹𝑔))
1716ineq1d 4185 . . . . . 6 (𝑆 = (𝐹𝑔) → (𝒫 𝑆 ∩ Fin) = (𝒫 (𝐹𝑔) ∩ Fin))
1817eleq2d 2815 . . . . 5 (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
1918bibi2d 342 . . . 4 (𝑆 = (𝐹𝑔) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin))))
2015, 19syl5ibrcom 247 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin))))
2120pm5.32rd 578 . 2 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑆 = (𝐹𝑔)) ↔ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑆 = (𝐹𝑔))))
2221rexbidv2 3154 1 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566  cfv 6514  Fincfn 8921  Moorecmre 17550  mrClscmrc 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-mre 17554  df-mrc 17555
This theorem is referenced by:  mrefg3  42703  isnacs3  42705
  Copyright terms: Public domain W3C validator