Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg2 Structured version   Visualization version   GIF version

Theorem mrefg2 39648
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrefg2 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg2
StepHypRef Expression
1 isnacs.f . . . . . . . . 9 𝐹 = (mrCls‘𝐶)
21mrcssid 16880 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → 𝑔 ⊆ (𝐹𝑔))
3 simpr 488 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔 ⊆ (𝐹𝑔))
41mrcssv 16877 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑔) ⊆ 𝑋)
54adantr 484 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → (𝐹𝑔) ⊆ 𝑋)
63, 5sstrd 3925 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔𝑋)
72, 6impbida 800 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝑔𝑋𝑔 ⊆ (𝐹𝑔)))
8 vex 3444 . . . . . . . 8 𝑔 ∈ V
98elpw 4501 . . . . . . 7 (𝑔 ∈ 𝒫 𝑋𝑔𝑋)
108elpw 4501 . . . . . . 7 (𝑔 ∈ 𝒫 (𝐹𝑔) ↔ 𝑔 ⊆ (𝐹𝑔))
117, 9, 103bitr4g 317 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ 𝒫 𝑋𝑔 ∈ 𝒫 (𝐹𝑔)))
1211anbi1d 632 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin)))
13 elin 3897 . . . . 5 (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin))
14 elin 3897 . . . . 5 (𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin))
1512, 13, 143bitr4g 317 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
16 pweq 4513 . . . . . . 7 (𝑆 = (𝐹𝑔) → 𝒫 𝑆 = 𝒫 (𝐹𝑔))
1716ineq1d 4138 . . . . . 6 (𝑆 = (𝐹𝑔) → (𝒫 𝑆 ∩ Fin) = (𝒫 (𝐹𝑔) ∩ Fin))
1817eleq2d 2875 . . . . 5 (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
1918bibi2d 346 . . . 4 (𝑆 = (𝐹𝑔) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin))))
2015, 19syl5ibrcom 250 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin))))
2120pm5.32rd 581 . 2 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑆 = (𝐹𝑔)) ↔ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑆 = (𝐹𝑔))))
2221rexbidv2 3254 1 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  cin 3880  wss 3881  𝒫 cpw 4497  cfv 6324  Fincfn 8492  Moorecmre 16845  mrClscmrc 16846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-mre 16849  df-mrc 16850
This theorem is referenced by:  mrefg3  39649  isnacs3  39651
  Copyright terms: Public domain W3C validator