Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg2 Structured version   Visualization version   GIF version

Theorem mrefg2 40445
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrefg2 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg2
StepHypRef Expression
1 isnacs.f . . . . . . . . 9 𝐹 = (mrCls‘𝐶)
21mrcssid 17243 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → 𝑔 ⊆ (𝐹𝑔))
3 simpr 484 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔 ⊆ (𝐹𝑔))
41mrcssv 17240 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑔) ⊆ 𝑋)
54adantr 480 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → (𝐹𝑔) ⊆ 𝑋)
63, 5sstrd 3927 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔𝑋)
72, 6impbida 797 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝑔𝑋𝑔 ⊆ (𝐹𝑔)))
8 vex 3426 . . . . . . . 8 𝑔 ∈ V
98elpw 4534 . . . . . . 7 (𝑔 ∈ 𝒫 𝑋𝑔𝑋)
108elpw 4534 . . . . . . 7 (𝑔 ∈ 𝒫 (𝐹𝑔) ↔ 𝑔 ⊆ (𝐹𝑔))
117, 9, 103bitr4g 313 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ 𝒫 𝑋𝑔 ∈ 𝒫 (𝐹𝑔)))
1211anbi1d 629 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin)))
13 elin 3899 . . . . 5 (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin))
14 elin 3899 . . . . 5 (𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin))
1512, 13, 143bitr4g 313 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
16 pweq 4546 . . . . . . 7 (𝑆 = (𝐹𝑔) → 𝒫 𝑆 = 𝒫 (𝐹𝑔))
1716ineq1d 4142 . . . . . 6 (𝑆 = (𝐹𝑔) → (𝒫 𝑆 ∩ Fin) = (𝒫 (𝐹𝑔) ∩ Fin))
1817eleq2d 2824 . . . . 5 (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
1918bibi2d 342 . . . 4 (𝑆 = (𝐹𝑔) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin))))
2015, 19syl5ibrcom 246 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin))))
2120pm5.32rd 577 . 2 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑆 = (𝐹𝑔)) ↔ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑆 = (𝐹𝑔))))
2221rexbidv2 3223 1 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530  cfv 6418  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213
This theorem is referenced by:  mrefg3  40446  isnacs3  40448
  Copyright terms: Public domain W3C validator