Proof of Theorem mrefg2
| Step | Hyp | Ref
| Expression |
| 1 | | isnacs.f |
. . . . . . . . 9
⊢ 𝐹 = (mrCls‘𝐶) |
| 2 | 1 | mrcssid 17634 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ 𝑋) → 𝑔 ⊆ (𝐹‘𝑔)) |
| 3 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹‘𝑔)) → 𝑔 ⊆ (𝐹‘𝑔)) |
| 4 | 1 | mrcssv 17631 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑔) ⊆ 𝑋) |
| 5 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹‘𝑔)) → (𝐹‘𝑔) ⊆ 𝑋) |
| 6 | 3, 5 | sstrd 3974 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹‘𝑔)) → 𝑔 ⊆ 𝑋) |
| 7 | 2, 6 | impbida 800 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑔 ⊆ 𝑋 ↔ 𝑔 ⊆ (𝐹‘𝑔))) |
| 8 | | vex 3468 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
| 9 | 8 | elpw 4584 |
. . . . . . 7
⊢ (𝑔 ∈ 𝒫 𝑋 ↔ 𝑔 ⊆ 𝑋) |
| 10 | 8 | elpw 4584 |
. . . . . . 7
⊢ (𝑔 ∈ 𝒫 (𝐹‘𝑔) ↔ 𝑔 ⊆ (𝐹‘𝑔)) |
| 11 | 7, 9, 10 | 3bitr4g 314 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ 𝒫 𝑋 ↔ 𝑔 ∈ 𝒫 (𝐹‘𝑔))) |
| 12 | 11 | anbi1d 631 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ 𝒫 𝑋 ∧ 𝑔 ∈ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹‘𝑔) ∧ 𝑔 ∈ Fin))) |
| 13 | | elin 3947 |
. . . . 5
⊢ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑔 ∈ 𝒫 𝑋 ∧ 𝑔 ∈ Fin)) |
| 14 | | elin 3947 |
. . . . 5
⊢ (𝑔 ∈ (𝒫 (𝐹‘𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹‘𝑔) ∧ 𝑔 ∈ Fin)) |
| 15 | 12, 13, 14 | 3bitr4g 314 |
. . . 4
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹‘𝑔) ∩ Fin))) |
| 16 | | pweq 4594 |
. . . . . . 7
⊢ (𝑆 = (𝐹‘𝑔) → 𝒫 𝑆 = 𝒫 (𝐹‘𝑔)) |
| 17 | 16 | ineq1d 4199 |
. . . . . 6
⊢ (𝑆 = (𝐹‘𝑔) → (𝒫 𝑆 ∩ Fin) = (𝒫 (𝐹‘𝑔) ∩ Fin)) |
| 18 | 17 | eleq2d 2821 |
. . . . 5
⊢ (𝑆 = (𝐹‘𝑔) → (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹‘𝑔) ∩ Fin))) |
| 19 | 18 | bibi2d 342 |
. . . 4
⊢ (𝑆 = (𝐹‘𝑔) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹‘𝑔) ∩ Fin)))) |
| 20 | 15, 19 | syl5ibrcom 247 |
. . 3
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 = (𝐹‘𝑔) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)))) |
| 21 | 20 | pm5.32rd 578 |
. 2
⊢ (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑆 = (𝐹‘𝑔)) ↔ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑆 = (𝐹‘𝑔)))) |
| 22 | 21 | rexbidv2 3161 |
1
⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) |