Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrefg2 Structured version   Visualization version   GIF version

Theorem mrefg2 42824
Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrefg2 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem mrefg2
StepHypRef Expression
1 isnacs.f . . . . . . . . 9 𝐹 = (mrCls‘𝐶)
21mrcssid 17525 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → 𝑔 ⊆ (𝐹𝑔))
3 simpr 484 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔 ⊆ (𝐹𝑔))
41mrcssv 17522 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑔) ⊆ 𝑋)
54adantr 480 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → (𝐹𝑔) ⊆ 𝑋)
63, 5sstrd 3941 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ (𝐹𝑔)) → 𝑔𝑋)
72, 6impbida 800 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝑔𝑋𝑔 ⊆ (𝐹𝑔)))
8 vex 3441 . . . . . . . 8 𝑔 ∈ V
98elpw 4553 . . . . . . 7 (𝑔 ∈ 𝒫 𝑋𝑔𝑋)
108elpw 4553 . . . . . . 7 (𝑔 ∈ 𝒫 (𝐹𝑔) ↔ 𝑔 ⊆ (𝐹𝑔))
117, 9, 103bitr4g 314 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ 𝒫 𝑋𝑔 ∈ 𝒫 (𝐹𝑔)))
1211anbi1d 631 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin)))
13 elin 3914 . . . . 5 (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin))
14 elin 3914 . . . . 5 (𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝐹𝑔) ∧ 𝑔 ∈ Fin))
1512, 13, 143bitr4g 314 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
16 pweq 4563 . . . . . . 7 (𝑆 = (𝐹𝑔) → 𝒫 𝑆 = 𝒫 (𝐹𝑔))
1716ineq1d 4168 . . . . . 6 (𝑆 = (𝐹𝑔) → (𝒫 𝑆 ∩ Fin) = (𝒫 (𝐹𝑔) ∩ Fin))
1817eleq2d 2819 . . . . 5 (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin)))
1918bibi2d 342 . . . 4 (𝑆 = (𝐹𝑔) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝐹𝑔) ∩ Fin))))
2015, 19syl5ibrcom 247 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑆 = (𝐹𝑔) → (𝑔 ∈ (𝒫 𝑋 ∩ Fin) ↔ 𝑔 ∈ (𝒫 𝑆 ∩ Fin))))
2120pm5.32rd 578 . 2 (𝐶 ∈ (Moore‘𝑋) → ((𝑔 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑆 = (𝐹𝑔)) ↔ (𝑔 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑆 = (𝐹𝑔))))
2221rexbidv2 3153 1 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  cin 3897  wss 3898  𝒫 cpw 4549  cfv 6486  Fincfn 8875  Moorecmre 17486  mrClscmrc 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-mre 17490  df-mrc 17491
This theorem is referenced by:  mrefg3  42825  isnacs3  42827
  Copyright terms: Public domain W3C validator