Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbeldm2d Structured version   Visualization version   GIF version

Theorem glbeldm2d 48900
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2d.b (𝜑𝐵 = (Base‘𝐾))
lubeldm2d.l (𝜑 = (le‘𝐾))
glbeldm2d.g (𝜑𝐺 = (glb‘𝐾))
glbeldm2d.p ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
glbeldm2d.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
glbeldm2d (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)

Proof of Theorem glbeldm2d
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2736 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2736 . . 3 (glb‘𝐾) = (glb‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 glbeldm2d.k . . 3 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5glbeldm2 48898 . 2 (𝜑 → (𝑆 ∈ dom (glb‘𝐾) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
7 glbeldm2d.g . . . 4 (𝜑𝐺 = (glb‘𝐾))
87dmeqd 5890 . . 3 (𝜑 → dom 𝐺 = dom (glb‘𝐾))
98eleq2d 2821 . 2 (𝜑 → (𝑆 ∈ dom 𝐺𝑆 ∈ dom (glb‘𝐾)))
10 lubeldm2d.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
1110sseq2d 3996 . . 3 (𝜑 → (𝑆𝐵𝑆 ⊆ (Base‘𝐾)))
12 glbeldm2d.p . . . . . . 7 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
13 lubeldm2d.l . . . . . . . . . . 11 (𝜑 = (le‘𝐾))
1413breqd 5135 . . . . . . . . . 10 (𝜑 → (𝑥 𝑦𝑥(le‘𝐾)𝑦))
1514ralbidv 3164 . . . . . . . . 9 (𝜑 → (∀𝑦𝑆 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥(le‘𝐾)𝑦))
1613breqd 5135 . . . . . . . . . . . 12 (𝜑 → (𝑧 𝑦𝑧(le‘𝐾)𝑦))
1716ralbidv 3164 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧(le‘𝐾)𝑦))
1813breqd 5135 . . . . . . . . . . 11 (𝜑 → (𝑧 𝑥𝑧(le‘𝐾)𝑥))
1917, 18imbi12d 344 . . . . . . . . . 10 (𝜑 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
2010, 19raleqbidv 3329 . . . . . . . . 9 (𝜑 → (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
2115, 20anbi12d 632 . . . . . . . 8 (𝜑 → ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2221adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2312, 22bitrd 279 . . . . . 6 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2423pm5.32da 579 . . . . 5 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥𝐵 ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
2510eleq2d 2821 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
2625anbi1d 631 . . . . 5 (𝜑 → ((𝑥𝐵 ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
2724, 26bitrd 279 . . . 4 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
2827rexbidv2 3161 . . 3 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2911, 28anbi12d 632 . 2 (𝜑 → ((𝑆𝐵 ∧ ∃𝑥𝐵 𝜓) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
306, 9, 293bitr4d 311 1 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  dom cdm 5659  cfv 6536  Basecbs 17233  lecple 17283  Posetcpo 18324  glbcglb 18327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-proset 18311  df-poset 18330  df-glb 18362
This theorem is referenced by:  ipoglbdm  48931
  Copyright terms: Public domain W3C validator