Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbeldm2d Structured version   Visualization version   GIF version

Theorem glbeldm2d 46141
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2d.b (𝜑𝐵 = (Base‘𝐾))
lubeldm2d.l (𝜑 = (le‘𝐾))
glbeldm2d.g (𝜑𝐺 = (glb‘𝐾))
glbeldm2d.p ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
glbeldm2d.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
glbeldm2d (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)

Proof of Theorem glbeldm2d
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2738 . . 3 (glb‘𝐾) = (glb‘𝐾)
4 biid 260 . . 3 ((∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 glbeldm2d.k . . 3 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5glbeldm2 46139 . 2 (𝜑 → (𝑆 ∈ dom (glb‘𝐾) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
7 glbeldm2d.g . . . 4 (𝜑𝐺 = (glb‘𝐾))
87dmeqd 5803 . . 3 (𝜑 → dom 𝐺 = dom (glb‘𝐾))
98eleq2d 2824 . 2 (𝜑 → (𝑆 ∈ dom 𝐺𝑆 ∈ dom (glb‘𝐾)))
10 lubeldm2d.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
1110sseq2d 3949 . . 3 (𝜑 → (𝑆𝐵𝑆 ⊆ (Base‘𝐾)))
12 glbeldm2d.p . . . . . . 7 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
13 lubeldm2d.l . . . . . . . . . . 11 (𝜑 = (le‘𝐾))
1413breqd 5081 . . . . . . . . . 10 (𝜑 → (𝑥 𝑦𝑥(le‘𝐾)𝑦))
1514ralbidv 3120 . . . . . . . . 9 (𝜑 → (∀𝑦𝑆 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥(le‘𝐾)𝑦))
1613breqd 5081 . . . . . . . . . . . 12 (𝜑 → (𝑧 𝑦𝑧(le‘𝐾)𝑦))
1716ralbidv 3120 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧(le‘𝐾)𝑦))
1813breqd 5081 . . . . . . . . . . 11 (𝜑 → (𝑧 𝑥𝑧(le‘𝐾)𝑥))
1917, 18imbi12d 344 . . . . . . . . . 10 (𝜑 → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
2010, 19raleqbidv 3327 . . . . . . . . 9 (𝜑 → (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
2115, 20anbi12d 630 . . . . . . . 8 (𝜑 → ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2221adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2312, 22bitrd 278 . . . . . 6 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2423pm5.32da 578 . . . . 5 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥𝐵 ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
2510eleq2d 2824 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
2625anbi1d 629 . . . . 5 (𝜑 → ((𝑥𝐵 ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
2724, 26bitrd 278 . . . 4 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
2827rexbidv2 3223 . . 3 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2911, 28anbi12d 630 . 2 (𝜑 → ((𝑆𝐵 ∧ ∃𝑥𝐵 𝜓) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))))
306, 9, 293bitr4d 310 1 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  dom cdm 5580  cfv 6418  Basecbs 16840  lecple 16895  Posetcpo 17940  glbcglb 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-proset 17928  df-poset 17946  df-glb 17980
This theorem is referenced by:  ipoglbdm  46164
  Copyright terms: Public domain W3C validator