![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncoprmgcdne1b | Structured version Visualization version GIF version |
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16663 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
ncoprmgcdne1b | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12868 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → 𝑖 ∈ ℕ) | |
2 | 1 | adantr 482 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℕ) |
3 | eluz2b3 12906 | . . . . . . 7 ⊢ (𝑖 ∈ (ℤ≥‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) | |
4 | neneq 2947 | . . . . . . 7 ⊢ (𝑖 ≠ 1 → ¬ 𝑖 = 1) | |
5 | 3, 4 | simplbiim 506 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → ¬ 𝑖 = 1) |
6 | 5 | anim1ci 617 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) |
7 | 2, 6 | jca 513 | . . . 4 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
8 | neqne 2949 | . . . . . . . . . . . 12 ⊢ (¬ 𝑖 = 1 → 𝑖 ≠ 1) | |
9 | 8 | anim1ci 617 | . . . . . . . . . . 11 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) |
10 | 9, 3 | sylibr 233 | . . . . . . . . . 10 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ≥‘2)) |
11 | 10 | ex 414 | . . . . . . . . 9 ⊢ (¬ 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
12 | 11 | adantl 483 | . . . . . . . 8 ⊢ (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
13 | 12 | impcom 409 | . . . . . . 7 ⊢ ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ≥‘2)) |
14 | 13 | adantl 483 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ≥‘2)) |
15 | simprrl 780 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | |
16 | 14, 15 | jca 513 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
17 | 16 | ex 414 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)))) |
18 | 7, 17 | impbid2 225 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)))) |
19 | 18 | rexbidv2 3175 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
20 | rexanali 3103 | . . 3 ⊢ (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | |
21 | 20 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
22 | coprmgcdb 16586 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | |
23 | 22 | necon3bbid 2979 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
24 | 19, 21, 23 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 1c1 11111 ℕcn 12212 2c2 12267 ℤ≥cuz 12822 ∥ cdvds 16197 gcd cgcd 16435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-gcd 16436 |
This theorem is referenced by: ncoprmgcdgt1b 16588 prmdvdsncoprmbd 16663 flt4lem2 41389 |
Copyright terms: Public domain | W3C validator |