![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncoprmgcdne1b | Structured version Visualization version GIF version |
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16693 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
ncoprmgcdne1b | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12893 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → 𝑖 ∈ ℕ) | |
2 | 1 | adantr 479 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℕ) |
3 | eluz2b3 12931 | . . . . . . 7 ⊢ (𝑖 ∈ (ℤ≥‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) | |
4 | neneq 2936 | . . . . . . 7 ⊢ (𝑖 ≠ 1 → ¬ 𝑖 = 1) | |
5 | 3, 4 | simplbiim 503 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → ¬ 𝑖 = 1) |
6 | 5 | anim1ci 614 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) |
7 | 2, 6 | jca 510 | . . . 4 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
8 | neqne 2938 | . . . . . . . . . . . 12 ⊢ (¬ 𝑖 = 1 → 𝑖 ≠ 1) | |
9 | 8 | anim1ci 614 | . . . . . . . . . . 11 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) |
10 | 9, 3 | sylibr 233 | . . . . . . . . . 10 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ≥‘2)) |
11 | 10 | ex 411 | . . . . . . . . 9 ⊢ (¬ 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
12 | 11 | adantl 480 | . . . . . . . 8 ⊢ (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
13 | 12 | impcom 406 | . . . . . . 7 ⊢ ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ≥‘2)) |
14 | 13 | adantl 480 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ≥‘2)) |
15 | simprrl 779 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | |
16 | 14, 15 | jca 510 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
17 | 16 | ex 411 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)))) |
18 | 7, 17 | impbid2 225 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)))) |
19 | 18 | rexbidv2 3165 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
20 | rexanali 3092 | . . 3 ⊢ (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | |
21 | 20 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
22 | coprmgcdb 16614 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | |
23 | 22 | necon3bbid 2968 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
24 | 19, 21, 23 | 3bitrd 304 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 class class class wbr 5144 ‘cfv 6543 (class class class)co 7413 1c1 11134 ℕcn 12237 2c2 12292 ℤ≥cuz 12847 ∥ cdvds 16225 gcd cgcd 16463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-dvds 16226 df-gcd 16464 |
This theorem is referenced by: ncoprmgcdgt1b 16616 prmdvdsncoprmbd 16693 flt4lem2 42132 |
Copyright terms: Public domain | W3C validator |