MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmgcdne1b Structured version   Visualization version   GIF version

Theorem ncoprmgcdne1b 16697
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16774 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 eluz2nn 12949 . . . . . 6 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℕ)
21adantr 480 . . . . 5 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℕ)
3 eluz2b3 12987 . . . . . . 7 (𝑖 ∈ (ℤ‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
4 neneq 2952 . . . . . . 7 (𝑖 ≠ 1 → ¬ 𝑖 = 1)
53, 4simplbiim 504 . . . . . 6 (𝑖 ∈ (ℤ‘2) → ¬ 𝑖 = 1)
65anim1ci 615 . . . . 5 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))
72, 6jca 511 . . . 4 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
8 neqne 2954 . . . . . . . . . . . 12 𝑖 = 1 → 𝑖 ≠ 1)
98anim1ci 615 . . . . . . . . . . 11 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
109, 3sylibr 234 . . . . . . . . . 10 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘2))
1110ex 412 . . . . . . . . 9 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1211adantl 481 . . . . . . . 8 (((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1312impcom 407 . . . . . . 7 ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ‘2))
1413adantl 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ‘2))
15 simprrl 780 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖𝐴𝑖𝐵))
1614, 15jca 511 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)))
1716ex 412 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))))
187, 17impbid2 226 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))))
1918rexbidv2 3181 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
20 rexanali 3108 . . 3 (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
2120a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
22 coprmgcdb 16696 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
2322necon3bbid 2984 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1))
2419, 21, 233bitrd 305 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  1c1 11185  cn 12293  2c2 12348  cuz 12903  cdvds 16302   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541
This theorem is referenced by:  ncoprmgcdgt1b  16698  prmdvdsncoprmbd  16774  flt4lem2  42602
  Copyright terms: Public domain W3C validator