![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncoprmgcdne1b | Structured version Visualization version GIF version |
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
ncoprmgcdne1b | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12037 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → 𝑖 ∈ ℕ) | |
2 | 1 | adantr 474 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℕ) |
3 | eluz2b3 12074 | . . . . . . 7 ⊢ (𝑖 ∈ (ℤ≥‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) | |
4 | neneq 2975 | . . . . . . 7 ⊢ (𝑖 ≠ 1 → ¬ 𝑖 = 1) | |
5 | 3, 4 | simplbiim 500 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → ¬ 𝑖 = 1) |
6 | 5 | anim1ci 609 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) |
7 | 2, 6 | jca 507 | . . . 4 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
8 | neqne 2977 | . . . . . . . . . . . 12 ⊢ (¬ 𝑖 = 1 → 𝑖 ≠ 1) | |
9 | 8 | anim1ci 609 | . . . . . . . . . . 11 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) |
10 | 9, 3 | sylibr 226 | . . . . . . . . . 10 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ≥‘2)) |
11 | 10 | ex 403 | . . . . . . . . 9 ⊢ (¬ 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
12 | 11 | adantl 475 | . . . . . . . 8 ⊢ (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
13 | 12 | impcom 398 | . . . . . . 7 ⊢ ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ≥‘2)) |
14 | 13 | adantl 475 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ≥‘2)) |
15 | simprrl 771 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | |
16 | 14, 15 | jca 507 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
17 | 16 | ex 403 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)))) |
18 | 7, 17 | impbid2 218 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)))) |
19 | 18 | rexbidv2 3233 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
20 | rexanali 3179 | . . 3 ⊢ (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | |
21 | 20 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
22 | coprmgcdb 15778 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | |
23 | 22 | necon3bbid 3006 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
24 | 19, 21, 23 | 3bitrd 297 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ∃wrex 3091 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 1c1 10275 ℕcn 11379 2c2 11435 ℤ≥cuz 11997 ∥ cdvds 15396 gcd cgcd 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 df-gcd 15633 |
This theorem is referenced by: ncoprmgcdgt1b 15780 |
Copyright terms: Public domain | W3C validator |