| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncoprmgcdne1b | Structured version Visualization version GIF version | ||
| Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16704 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| ncoprmgcdne1b | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 12854 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → 𝑖 ∈ ℕ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℕ) |
| 3 | eluz2b3 12888 | . . . . . . 7 ⊢ (𝑖 ∈ (ℤ≥‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) | |
| 4 | neneq 2932 | . . . . . . 7 ⊢ (𝑖 ≠ 1 → ¬ 𝑖 = 1) | |
| 5 | 3, 4 | simplbiim 504 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → ¬ 𝑖 = 1) |
| 6 | 5 | anim1ci 616 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) |
| 7 | 2, 6 | jca 511 | . . . 4 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
| 8 | neqne 2934 | . . . . . . . . . . . 12 ⊢ (¬ 𝑖 = 1 → 𝑖 ≠ 1) | |
| 9 | 8 | anim1ci 616 | . . . . . . . . . . 11 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) |
| 10 | 9, 3 | sylibr 234 | . . . . . . . . . 10 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ≥‘2)) |
| 11 | 10 | ex 412 | . . . . . . . . 9 ⊢ (¬ 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
| 12 | 11 | adantl 481 | . . . . . . . 8 ⊢ (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
| 13 | 12 | impcom 407 | . . . . . . 7 ⊢ ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ≥‘2)) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ≥‘2)) |
| 15 | simprrl 780 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | |
| 16 | 14, 15 | jca 511 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
| 17 | 16 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)))) |
| 18 | 7, 17 | impbid2 226 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)))) |
| 19 | 18 | rexbidv2 3154 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
| 20 | rexanali 3085 | . . 3 ⊢ (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | |
| 21 | 20 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
| 22 | coprmgcdb 16626 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | |
| 23 | 22 | necon3bbid 2963 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
| 24 | 19, 21, 23 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 ℕcn 12193 2c2 12248 ℤ≥cuz 12800 ∥ cdvds 16229 gcd cgcd 16471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 |
| This theorem is referenced by: ncoprmgcdgt1b 16628 prmdvdsncoprmbd 16704 flt4lem2 42642 |
| Copyright terms: Public domain | W3C validator |