![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncoprmgcdne1b | Structured version Visualization version GIF version |
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16690 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
ncoprmgcdne1b | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12890 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → 𝑖 ∈ ℕ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℕ) |
3 | eluz2b3 12928 | . . . . . . 7 ⊢ (𝑖 ∈ (ℤ≥‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) | |
4 | neneq 2941 | . . . . . . 7 ⊢ (𝑖 ≠ 1 → ¬ 𝑖 = 1) | |
5 | 3, 4 | simplbiim 504 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘2) → ¬ 𝑖 = 1) |
6 | 5 | anim1ci 615 | . . . . 5 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) |
7 | 2, 6 | jca 511 | . . . 4 ⊢ ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
8 | neqne 2943 | . . . . . . . . . . . 12 ⊢ (¬ 𝑖 = 1 → 𝑖 ≠ 1) | |
9 | 8 | anim1ci 615 | . . . . . . . . . . 11 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1)) |
10 | 9, 3 | sylibr 233 | . . . . . . . . . 10 ⊢ ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ≥‘2)) |
11 | 10 | ex 412 | . . . . . . . . 9 ⊢ (¬ 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
12 | 11 | adantl 481 | . . . . . . . 8 ⊢ (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ≥‘2))) |
13 | 12 | impcom 407 | . . . . . . 7 ⊢ ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ≥‘2)) |
14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ≥‘2)) |
15 | simprrl 780 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | |
16 | 14, 15 | jca 511 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
17 | 16 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)))) |
18 | 7, 17 | impbid2 225 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ≥‘2) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1)))) |
19 | 18 | rexbidv2 3169 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1))) |
20 | rexanali 3097 | . . 3 ⊢ (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) | |
21 | 20 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
22 | coprmgcdb 16611 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | |
23 | 22 | necon3bbid 2973 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
24 | 19, 21, 23 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 ∃wrex 3065 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 1c1 11131 ℕcn 12234 2c2 12289 ℤ≥cuz 12844 ∥ cdvds 16222 gcd cgcd 16460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-gcd 16461 |
This theorem is referenced by: ncoprmgcdgt1b 16613 prmdvdsncoprmbd 16690 flt4lem2 41993 |
Copyright terms: Public domain | W3C validator |