Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbl Structured version   Visualization version   GIF version

Theorem hoiqssbl 46630
Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbl.x (𝜑𝑋 ∈ Fin)
hoiqssbl.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbl (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbl
StepHypRef Expression
1 0ex 5265 . . . . . . 7 ∅ ∈ V
21snid 4629 . . . . . 6 ∅ ∈ {∅}
32a1i 11 . . . . 5 ((𝜑𝑋 = ∅) → ∅ ∈ {∅})
4 hoiqssbl.y . . . . . . . . 9 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
54adantr 480 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝑌 ∈ (ℝ ↑m 𝑋))
6 oveq2 7398 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
7 reex 11166 . . . . . . . . . . . 12 ℝ ∈ V
8 mapdm0 8818 . . . . . . . . . . . 12 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
97, 8ax-mp 5 . . . . . . . . . . 11 (ℝ ↑m ∅) = {∅}
109a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑m ∅) = {∅})
116, 10eqtrd 2765 . . . . . . . . 9 (𝑋 = ∅ → (ℝ ↑m 𝑋) = {∅})
1211adantl 481 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = {∅})
135, 12eleqtrd 2831 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑌 ∈ {∅})
14 0fi 9016 . . . . . . . . . . . . 13 ∅ ∈ Fin
15 eqid 2730 . . . . . . . . . . . . . 14 (dist‘(ℝ^‘∅)) = (dist‘(ℝ^‘∅))
1615rrxmetfi 25319 . . . . . . . . . . . . 13 (∅ ∈ Fin → (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑m ∅)))
1714, 16ax-mp 5 . . . . . . . . . . . 12 (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑m ∅))
18 metxmet 24229 . . . . . . . . . . . 12 ((dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑m ∅)) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅)))
1917, 18ax-mp 5 . . . . . . . . . . 11 (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅)))
213, 9eleqtrrdi 2840 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ ∈ (ℝ ↑m ∅))
22 hoiqssbl.e . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → 𝐸 ∈ ℝ+)
24 blcntr 24308 . . . . . . . . . 10 (((dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅)) ∧ ∅ ∈ (ℝ ↑m ∅) ∧ 𝐸 ∈ ℝ+) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
2520, 21, 23, 24syl3anc 1373 . . . . . . . . 9 ((𝜑𝑋 = ∅) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
26 elsni 4609 . . . . . . . . . . . 12 (𝑌 ∈ {∅} → 𝑌 = ∅)
2713, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑋 = ∅) → 𝑌 = ∅)
2827eqcomd 2736 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ = 𝑌)
2928oveq1d 7405 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (∅(ball‘(dist‘(ℝ^‘∅)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3025, 29eleqtrd 2831 . . . . . . . 8 ((𝜑𝑋 = ∅) → ∅ ∈ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3130snssd 4776 . . . . . . 7 ((𝜑𝑋 = ∅) → {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3213, 31jca 511 . . . . . 6 ((𝜑𝑋 = ∅) → (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
33 biidd 262 . . . . . . 7 (𝑑 = ∅ → ((𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3433rspcev 3591 . . . . . 6 ((∅ ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
353, 32, 34syl2anc 584 . . . . 5 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
36 biidd 262 . . . . . 6 (𝑐 = ∅ → (∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3736rspcev 3591 . . . . 5 ((∅ ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
383, 35, 37syl2anc 584 . . . 4 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
39 oveq2 7398 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑m 𝑋) = (ℚ ↑m ∅))
40 qex 12927 . . . . . . . . . . . 12 ℚ ∈ V
41 mapdm0 8818 . . . . . . . . . . . 12 (ℚ ∈ V → (ℚ ↑m ∅) = {∅})
4240, 41ax-mp 5 . . . . . . . . . . 11 (ℚ ↑m ∅) = {∅}
4342a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑m ∅) = {∅})
4439, 43eqtr2d 2766 . . . . . . . . 9 (𝑋 = ∅ → {∅} = (ℚ ↑m 𝑋))
4544eqcomd 2736 . . . . . . . 8 (𝑋 = ∅ → (ℚ ↑m 𝑋) = {∅})
4645eleq2d 2815 . . . . . . 7 (𝑋 = ∅ → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐 ∈ {∅}))
4745eleq2d 2815 . . . . . . . . 9 (𝑋 = ∅ → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑 ∈ {∅}))
4847anbi1d 631 . . . . . . . 8 (𝑋 = ∅ → ((𝑑 ∈ (ℚ ↑m 𝑋) ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑑 ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
4948rexbidv2 3154 . . . . . . 7 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5046, 49anbi12d 632 . . . . . 6 (𝑋 = ∅ → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑐 ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
5150rexbidv2 3154 . . . . 5 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5251adantl 481 . . . 4 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5338, 52mpbird 257 . . 3 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
54 ixpeq1 8884 . . . . . . . . 9 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)))
55 ixp0x 8902 . . . . . . . . . 10 X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅}
5655a1i 11 . . . . . . . . 9 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5754, 56eqtrd 2765 . . . . . . . 8 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5857eleq2d 2815 . . . . . . 7 (𝑋 = ∅ → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ↔ 𝑌 ∈ {∅}))
59 2fveq3 6866 . . . . . . . . . 10 (𝑋 = ∅ → (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘∅)))
6059fveq2d 6865 . . . . . . . . 9 (𝑋 = ∅ → (ball‘(dist‘(ℝ^‘𝑋))) = (ball‘(dist‘(ℝ^‘∅))))
6160oveqd 7407 . . . . . . . 8 (𝑋 = ∅ → (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
6257, 61sseq12d 3983 . . . . . . 7 (𝑋 = ∅ → (X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
6358, 62anbi12d 632 . . . . . 6 (𝑋 = ∅ → ((𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6463rexbidv 3158 . . . . 5 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6564rexbidv 3158 . . . 4 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6665adantl 481 . . 3 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6753, 66mpbird 257 . 2 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
68 hoiqssbl.x . . . 4 (𝜑𝑋 ∈ Fin)
6968adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
70 neqne 2934 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
7170adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
724adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑌 ∈ (ℝ ↑m 𝑋))
7322adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐸 ∈ ℝ+)
7469, 71, 72, 73hoiqssbllem3 46629 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
7567, 74pm2.61dan 812 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  wss 3917  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  m cmap 8802  Xcixp 8873  Fincfn 8921  cr 11074  cq 12914  +crp 12958  [,)cico 13315  distcds 17236  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258  ℝ^crrx 25290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-nm 24477  df-tng 24479  df-tcph 25076  df-rrx 25292
This theorem is referenced by:  opnvonmbllem2  46638
  Copyright terms: Public domain W3C validator