Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbl Structured version   Visualization version   GIF version

Theorem hoiqssbl 46733
Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbl.x (𝜑𝑋 ∈ Fin)
hoiqssbl.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbl (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbl
StepHypRef Expression
1 0ex 5243 . . . . . . 7 ∅ ∈ V
21snid 4612 . . . . . 6 ∅ ∈ {∅}
32a1i 11 . . . . 5 ((𝜑𝑋 = ∅) → ∅ ∈ {∅})
4 hoiqssbl.y . . . . . . . . 9 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
54adantr 480 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝑌 ∈ (ℝ ↑m 𝑋))
6 oveq2 7354 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
7 reex 11097 . . . . . . . . . . . 12 ℝ ∈ V
8 mapdm0 8766 . . . . . . . . . . . 12 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
97, 8ax-mp 5 . . . . . . . . . . 11 (ℝ ↑m ∅) = {∅}
109a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑m ∅) = {∅})
116, 10eqtrd 2766 . . . . . . . . 9 (𝑋 = ∅ → (ℝ ↑m 𝑋) = {∅})
1211adantl 481 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = {∅})
135, 12eleqtrd 2833 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑌 ∈ {∅})
14 0fi 8964 . . . . . . . . . . . . 13 ∅ ∈ Fin
15 eqid 2731 . . . . . . . . . . . . . 14 (dist‘(ℝ^‘∅)) = (dist‘(ℝ^‘∅))
1615rrxmetfi 25339 . . . . . . . . . . . . 13 (∅ ∈ Fin → (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑m ∅)))
1714, 16ax-mp 5 . . . . . . . . . . . 12 (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑m ∅))
18 metxmet 24249 . . . . . . . . . . . 12 ((dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑m ∅)) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅)))
1917, 18ax-mp 5 . . . . . . . . . . 11 (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅)))
213, 9eleqtrrdi 2842 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ ∈ (ℝ ↑m ∅))
22 hoiqssbl.e . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → 𝐸 ∈ ℝ+)
24 blcntr 24328 . . . . . . . . . 10 (((dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑m ∅)) ∧ ∅ ∈ (ℝ ↑m ∅) ∧ 𝐸 ∈ ℝ+) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
2520, 21, 23, 24syl3anc 1373 . . . . . . . . 9 ((𝜑𝑋 = ∅) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
26 elsni 4590 . . . . . . . . . . . 12 (𝑌 ∈ {∅} → 𝑌 = ∅)
2713, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑋 = ∅) → 𝑌 = ∅)
2827eqcomd 2737 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ = 𝑌)
2928oveq1d 7361 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (∅(ball‘(dist‘(ℝ^‘∅)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3025, 29eleqtrd 2833 . . . . . . . 8 ((𝜑𝑋 = ∅) → ∅ ∈ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3130snssd 4758 . . . . . . 7 ((𝜑𝑋 = ∅) → {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3213, 31jca 511 . . . . . 6 ((𝜑𝑋 = ∅) → (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
33 biidd 262 . . . . . . 7 (𝑑 = ∅ → ((𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3433rspcev 3572 . . . . . 6 ((∅ ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
353, 32, 34syl2anc 584 . . . . 5 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
36 biidd 262 . . . . . 6 (𝑐 = ∅ → (∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3736rspcev 3572 . . . . 5 ((∅ ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
383, 35, 37syl2anc 584 . . . 4 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
39 oveq2 7354 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑m 𝑋) = (ℚ ↑m ∅))
40 qex 12859 . . . . . . . . . . . 12 ℚ ∈ V
41 mapdm0 8766 . . . . . . . . . . . 12 (ℚ ∈ V → (ℚ ↑m ∅) = {∅})
4240, 41ax-mp 5 . . . . . . . . . . 11 (ℚ ↑m ∅) = {∅}
4342a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑m ∅) = {∅})
4439, 43eqtr2d 2767 . . . . . . . . 9 (𝑋 = ∅ → {∅} = (ℚ ↑m 𝑋))
4544eqcomd 2737 . . . . . . . 8 (𝑋 = ∅ → (ℚ ↑m 𝑋) = {∅})
4645eleq2d 2817 . . . . . . 7 (𝑋 = ∅ → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐 ∈ {∅}))
4745eleq2d 2817 . . . . . . . . 9 (𝑋 = ∅ → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑 ∈ {∅}))
4847anbi1d 631 . . . . . . . 8 (𝑋 = ∅ → ((𝑑 ∈ (ℚ ↑m 𝑋) ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑑 ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
4948rexbidv2 3152 . . . . . . 7 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5046, 49anbi12d 632 . . . . . 6 (𝑋 = ∅ → ((𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑐 ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
5150rexbidv2 3152 . . . . 5 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5251adantl 481 . . . 4 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5338, 52mpbird 257 . . 3 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
54 ixpeq1 8832 . . . . . . . . 9 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)))
55 ixp0x 8850 . . . . . . . . . 10 X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅}
5655a1i 11 . . . . . . . . 9 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5754, 56eqtrd 2766 . . . . . . . 8 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5857eleq2d 2817 . . . . . . 7 (𝑋 = ∅ → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ↔ 𝑌 ∈ {∅}))
59 2fveq3 6827 . . . . . . . . . 10 (𝑋 = ∅ → (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘∅)))
6059fveq2d 6826 . . . . . . . . 9 (𝑋 = ∅ → (ball‘(dist‘(ℝ^‘𝑋))) = (ball‘(dist‘(ℝ^‘∅))))
6160oveqd 7363 . . . . . . . 8 (𝑋 = ∅ → (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
6257, 61sseq12d 3963 . . . . . . 7 (𝑋 = ∅ → (X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
6358, 62anbi12d 632 . . . . . 6 (𝑋 = ∅ → ((𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6463rexbidv 3156 . . . . 5 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6564rexbidv 3156 . . . 4 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6665adantl 481 . . 3 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6753, 66mpbird 257 . 2 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
68 hoiqssbl.x . . . 4 (𝜑𝑋 ∈ Fin)
6968adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
70 neqne 2936 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
7170adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
724adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑌 ∈ (ℝ ↑m 𝑋))
7322adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐸 ∈ ℝ+)
7469, 71, 72, 73hoiqssbllem3 46732 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
7567, 74pm2.61dan 812 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cfv 6481  (class class class)co 7346  m cmap 8750  Xcixp 8821  Fincfn 8869  cr 11005  cq 12846  +crp 12890  [,)cico 13247  distcds 17170  ∞Metcxmet 21276  Metcmet 21277  ballcbl 21278  ℝ^crrx 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xadd 13012  df-ioo 13249  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-nm 24497  df-tng 24499  df-tcph 25096  df-rrx 25312
This theorem is referenced by:  opnvonmbllem2  46741
  Copyright terms: Public domain W3C validator