Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbl Structured version   Visualization version   GIF version

Theorem hoiqssbl 42471
Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbl.x (𝜑𝑋 ∈ Fin)
hoiqssbl.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
hoiqssbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbl (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbl
StepHypRef Expression
1 0ex 5109 . . . . . . 7 ∅ ∈ V
21snid 4512 . . . . . 6 ∅ ∈ {∅}
32a1i 11 . . . . 5 ((𝜑𝑋 = ∅) → ∅ ∈ {∅})
4 hoiqssbl.y . . . . . . . . 9 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
54adantr 481 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
6 oveq2 7031 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
7 reex 10481 . . . . . . . . . . . 12 ℝ ∈ V
8 mapdm0 8278 . . . . . . . . . . . 12 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
97, 8ax-mp 5 . . . . . . . . . . 11 (ℝ ↑𝑚 ∅) = {∅}
109a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑𝑚 ∅) = {∅})
116, 10eqtrd 2833 . . . . . . . . 9 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = {∅})
1211adantl 482 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) = {∅})
135, 12eleqtrd 2887 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑌 ∈ {∅})
14 0fin 8599 . . . . . . . . . . . . 13 ∅ ∈ Fin
15 eqid 2797 . . . . . . . . . . . . . 14 (dist‘(ℝ^‘∅)) = (dist‘(ℝ^‘∅))
1615rrxmetfi 23702 . . . . . . . . . . . . 13 (∅ ∈ Fin → (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅)))
1714, 16ax-mp 5 . . . . . . . . . . . 12 (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅))
18 metxmet 22631 . . . . . . . . . . . 12 ((dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅)) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)))
1917, 18ax-mp 5 . . . . . . . . . . 11 (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)))
213, 9syl6eleqr 2896 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ ∈ (ℝ ↑𝑚 ∅))
22 hoiqssbl.e . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
2322adantr 481 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → 𝐸 ∈ ℝ+)
24 blcntr 22710 . . . . . . . . . 10 (((dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)) ∧ ∅ ∈ (ℝ ↑𝑚 ∅) ∧ 𝐸 ∈ ℝ+) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
2520, 21, 23, 24syl3anc 1364 . . . . . . . . 9 ((𝜑𝑋 = ∅) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
26 elsni 4495 . . . . . . . . . . . 12 (𝑌 ∈ {∅} → 𝑌 = ∅)
2713, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑋 = ∅) → 𝑌 = ∅)
2827eqcomd 2803 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ = 𝑌)
2928oveq1d 7038 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (∅(ball‘(dist‘(ℝ^‘∅)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3025, 29eleqtrd 2887 . . . . . . . 8 ((𝜑𝑋 = ∅) → ∅ ∈ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3130snssd 4655 . . . . . . 7 ((𝜑𝑋 = ∅) → {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3213, 31jca 512 . . . . . 6 ((𝜑𝑋 = ∅) → (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
33 biidd 263 . . . . . . 7 (𝑑 = ∅ → ((𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3433rspcev 3561 . . . . . 6 ((∅ ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
353, 32, 34syl2anc 584 . . . . 5 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
36 biidd 263 . . . . . 6 (𝑐 = ∅ → (∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3736rspcev 3561 . . . . 5 ((∅ ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
383, 35, 37syl2anc 584 . . . 4 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
39 oveq2 7031 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑𝑚 𝑋) = (ℚ ↑𝑚 ∅))
40 qex 12214 . . . . . . . . . . . 12 ℚ ∈ V
41 mapdm0 8278 . . . . . . . . . . . 12 (ℚ ∈ V → (ℚ ↑𝑚 ∅) = {∅})
4240, 41ax-mp 5 . . . . . . . . . . 11 (ℚ ↑𝑚 ∅) = {∅}
4342a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑𝑚 ∅) = {∅})
4439, 43eqtr2d 2834 . . . . . . . . 9 (𝑋 = ∅ → {∅} = (ℚ ↑𝑚 𝑋))
4544eqcomd 2803 . . . . . . . 8 (𝑋 = ∅ → (ℚ ↑𝑚 𝑋) = {∅})
4645eleq2d 2870 . . . . . . 7 (𝑋 = ∅ → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐 ∈ {∅}))
4745eleq2d 2870 . . . . . . . . 9 (𝑋 = ∅ → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑 ∈ {∅}))
4847anbi1d 629 . . . . . . . 8 (𝑋 = ∅ → ((𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑑 ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
4948rexbidv2 3260 . . . . . . 7 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5046, 49anbi12d 630 . . . . . 6 (𝑋 = ∅ → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑐 ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
5150rexbidv2 3260 . . . . 5 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5251adantl 482 . . . 4 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5338, 52mpbird 258 . . 3 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
54 ixpeq1 8328 . . . . . . . . 9 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)))
55 ixp0x 8345 . . . . . . . . . 10 X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅}
5655a1i 11 . . . . . . . . 9 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5754, 56eqtrd 2833 . . . . . . . 8 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5857eleq2d 2870 . . . . . . 7 (𝑋 = ∅ → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ↔ 𝑌 ∈ {∅}))
59 2fveq3 6550 . . . . . . . . . 10 (𝑋 = ∅ → (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘∅)))
6059fveq2d 6549 . . . . . . . . 9 (𝑋 = ∅ → (ball‘(dist‘(ℝ^‘𝑋))) = (ball‘(dist‘(ℝ^‘∅))))
6160oveqd 7040 . . . . . . . 8 (𝑋 = ∅ → (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
6257, 61sseq12d 3927 . . . . . . 7 (𝑋 = ∅ → (X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
6358, 62anbi12d 630 . . . . . 6 (𝑋 = ∅ → ((𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6463rexbidv 3262 . . . . 5 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6564rexbidv 3262 . . . 4 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6665adantl 482 . . 3 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6753, 66mpbird 258 . 2 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
68 hoiqssbl.x . . . 4 (𝜑𝑋 ∈ Fin)
6968adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
70 neqne 2994 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
7170adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
724adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
7322adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐸 ∈ ℝ+)
7469, 71, 72, 73hoiqssbllem3 42470 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
7567, 74pm2.61dan 809 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wne 2986  wrex 3108  Vcvv 3440  wss 3865  c0 4217  {csn 4478  cfv 6232  (class class class)co 7023  𝑚 cmap 8263  Xcixp 8317  Fincfn 8364  cr 10389  cq 12201  +crp 12243  [,)cico 12594  distcds 16407  ∞Metcxmet 20216  Metcmet 20217  ballcbl 20218  ℝ^crrx 23673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-tpos 7750  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xadd 12362  df-ioo 12596  df-ico 12598  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-0g 16548  df-gsum 16549  df-prds 16554  df-pws 16556  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-mhm 17778  df-grp 17868  df-minusg 17869  df-sbg 17870  df-subg 18034  df-ghm 18101  df-cntz 18192  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-cring 18994  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-dvr 19127  df-rnghom 19161  df-drng 19198  df-field 19199  df-subrg 19227  df-staf 19310  df-srng 19311  df-lmod 19330  df-lss 19398  df-sra 19638  df-rgmod 19639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-cnfld 20232  df-refld 20435  df-dsmm 20562  df-frlm 20577  df-nm 22879  df-tng 22881  df-tcph 23460  df-rrx 23675
This theorem is referenced by:  opnvonmbllem2  42479
  Copyright terms: Public domain W3C validator