Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg2 Structured version   Visualization version   GIF version

Theorem islssfg2 43060
Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
islssfg2.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islssfg2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem islssfg2
StepHypRef Expression
1 islssfg.x . . 3 𝑋 = (𝑊s 𝑈)
2 islssfg.s . . 3 𝑆 = (LSubSp‘𝑊)
3 islssfg.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3islssfg 43059 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
5 islssfg2.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑊)
65, 2lssss 20842 . . . . . . . . . . . 12 ((𝑁𝑏) ∈ 𝑆 → (𝑁𝑏) ⊆ 𝐵)
76adantl 481 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑁𝑏) ⊆ 𝐵)
8 sstr2 3953 . . . . . . . . . . 11 (𝑏 ⊆ (𝑁𝑏) → ((𝑁𝑏) ⊆ 𝐵𝑏𝐵))
97, 8mpan9 506 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁𝑏)) → 𝑏𝐵)
105, 3lspssid 20891 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
1110adantlr 715 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
129, 11impbida 800 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁𝑏) ↔ 𝑏𝐵))
13 vex 3451 . . . . . . . . . 10 𝑏 ∈ V
1413elpw 4567 . . . . . . . . 9 (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ⊆ (𝑁𝑏))
1513elpw 4567 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
1612, 14, 153bitr4g 314 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵))
17 eleq1 2816 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → ((𝑁𝑏) ∈ 𝑆𝑈𝑆))
1817anbi2d 630 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈𝑆)))
19 pweq 4577 . . . . . . . . . . 11 ((𝑁𝑏) = 𝑈 → 𝒫 (𝑁𝑏) = 𝒫 𝑈)
2019eleq2d 2814 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝑈))
2120bibi1d 343 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2218, 21imbi12d 344 . . . . . . . 8 ((𝑁𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵))))
2316, 22mpbii 233 . . . . . . 7 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2423com12 32 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2524adantld 490 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2625pm5.32rd 578 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈))))
27 elin 3930 . . . . . 6 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2827anbi1i 624 . . . . 5 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈))
29 anass 468 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
3028, 29bitr2i 276 . . . 4 ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈))
3126, 30bitrdi 287 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈)))
3231rexbidv2 3153 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
334, 32bitrd 279 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563  cfv 6511  (class class class)co 7387  Fincfn 8918  Basecbs 17179  s cress 17200  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LFinGenclfig 43056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-sca 17236  df-vsca 17237  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lfig 43057
This theorem is referenced by:  islssfgi  43061  lsmfgcl  43063  islnm2  43067  lmhmfgima  43073
  Copyright terms: Public domain W3C validator