Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg2 Structured version   Visualization version   GIF version

Theorem islssfg2 40896
Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
islssfg2.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islssfg2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem islssfg2
StepHypRef Expression
1 islssfg.x . . 3 𝑋 = (𝑊s 𝑈)
2 islssfg.s . . 3 𝑆 = (LSubSp‘𝑊)
3 islssfg.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3islssfg 40895 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
5 islssfg2.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑊)
65, 2lssss 20198 . . . . . . . . . . . 12 ((𝑁𝑏) ∈ 𝑆 → (𝑁𝑏) ⊆ 𝐵)
76adantl 482 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑁𝑏) ⊆ 𝐵)
8 sstr2 3928 . . . . . . . . . . 11 (𝑏 ⊆ (𝑁𝑏) → ((𝑁𝑏) ⊆ 𝐵𝑏𝐵))
97, 8mpan9 507 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁𝑏)) → 𝑏𝐵)
105, 3lspssid 20247 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
1110adantlr 712 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
129, 11impbida 798 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁𝑏) ↔ 𝑏𝐵))
13 vex 3436 . . . . . . . . . 10 𝑏 ∈ V
1413elpw 4537 . . . . . . . . 9 (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ⊆ (𝑁𝑏))
1513elpw 4537 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
1612, 14, 153bitr4g 314 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵))
17 eleq1 2826 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → ((𝑁𝑏) ∈ 𝑆𝑈𝑆))
1817anbi2d 629 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈𝑆)))
19 pweq 4549 . . . . . . . . . . 11 ((𝑁𝑏) = 𝑈 → 𝒫 (𝑁𝑏) = 𝒫 𝑈)
2019eleq2d 2824 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝑈))
2120bibi1d 344 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2218, 21imbi12d 345 . . . . . . . 8 ((𝑁𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵))))
2316, 22mpbii 232 . . . . . . 7 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2423com12 32 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2524adantld 491 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2625pm5.32rd 578 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈))))
27 elin 3903 . . . . . 6 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2827anbi1i 624 . . . . 5 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈))
29 anass 469 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
3028, 29bitr2i 275 . . . 4 ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈))
3126, 30bitrdi 287 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈)))
3231rexbidv2 3224 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
334, 32bitrd 278 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533  cfv 6433  (class class class)co 7275  Fincfn 8733  Basecbs 16912  s cress 16941  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LFinGenclfig 40892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lfig 40893
This theorem is referenced by:  islssfgi  40897  lsmfgcl  40899  islnm2  40903  lmhmfgima  40909
  Copyright terms: Public domain W3C validator