![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfg2 | Structured version Visualization version GIF version |
Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islssfg.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
islssfg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
islssfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islssfg2.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
islssfg2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islssfg.x | . . 3 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | islssfg.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | islssfg.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islssfg 43027 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) |
5 | islssfg2.b | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5, 2 | lssss 20957 | . . . . . . . . . . . 12 ⊢ ((𝑁‘𝑏) ∈ 𝑆 → (𝑁‘𝑏) ⊆ 𝐵) |
7 | 6 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑁‘𝑏) ⊆ 𝐵) |
8 | sstr2 4015 | . . . . . . . . . . 11 ⊢ (𝑏 ⊆ (𝑁‘𝑏) → ((𝑁‘𝑏) ⊆ 𝐵 → 𝑏 ⊆ 𝐵)) | |
9 | 7, 8 | mpan9 506 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁‘𝑏)) → 𝑏 ⊆ 𝐵) |
10 | 5, 3 | lspssid 21006 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
11 | 10 | adantlr 714 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
12 | 9, 11 | impbida 800 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁‘𝑏) ↔ 𝑏 ⊆ 𝐵)) |
13 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑏 ∈ V | |
14 | 13 | elpw 4626 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ⊆ (𝑁‘𝑏)) |
15 | 13 | elpw 4626 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 𝐵 ↔ 𝑏 ⊆ 𝐵) |
16 | 12, 14, 15 | 3bitr4g 314 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) |
17 | eleq1 2832 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑁‘𝑏) ∈ 𝑆 ↔ 𝑈 ∈ 𝑆)) | |
18 | 17 | anbi2d 629 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆))) |
19 | pweq 4636 | . . . . . . . . . . 11 ⊢ ((𝑁‘𝑏) = 𝑈 → 𝒫 (𝑁‘𝑏) = 𝒫 𝑈) | |
20 | 19 | eleq2d 2830 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝑈)) |
21 | 20 | bibi1d 343 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
22 | 18, 21 | imbi12d 344 | . . . . . . . 8 ⊢ ((𝑁‘𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵)))) |
23 | 16, 22 | mpbii 233 | . . . . . . 7 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
24 | 23 | com12 32 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
25 | 24 | adantld 490 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
26 | 25 | pm5.32rd 577 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)))) |
27 | elin 3992 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) | |
28 | 27 | anbi1i 623 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | |
30 | 28, 29 | bitr2i 276 | . . . 4 ⊢ ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
31 | 26, 30 | bitrdi 287 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈))) |
32 | 31 | rexbidv2 3181 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
33 | 4, 32 | bitrd 279 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 Basecbs 17258 ↾s cress 17287 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 LFinGenclfig 43024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-sca 17327 df-vsca 17328 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-mgp 20162 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lfig 43025 |
This theorem is referenced by: islssfgi 43029 lsmfgcl 43031 islnm2 43035 lmhmfgima 43041 |
Copyright terms: Public domain | W3C validator |