Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfg2 | Structured version Visualization version GIF version |
Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islssfg.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
islssfg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
islssfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islssfg2.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
islssfg2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islssfg.x | . . 3 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | islssfg.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | islssfg.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islssfg 40645 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) |
5 | islssfg2.b | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5, 2 | lssss 20005 | . . . . . . . . . . . 12 ⊢ ((𝑁‘𝑏) ∈ 𝑆 → (𝑁‘𝑏) ⊆ 𝐵) |
7 | 6 | adantl 485 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑁‘𝑏) ⊆ 𝐵) |
8 | sstr2 3924 | . . . . . . . . . . 11 ⊢ (𝑏 ⊆ (𝑁‘𝑏) → ((𝑁‘𝑏) ⊆ 𝐵 → 𝑏 ⊆ 𝐵)) | |
9 | 7, 8 | mpan9 510 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁‘𝑏)) → 𝑏 ⊆ 𝐵) |
10 | 5, 3 | lspssid 20054 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
11 | 10 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
12 | 9, 11 | impbida 801 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁‘𝑏) ↔ 𝑏 ⊆ 𝐵)) |
13 | vex 3427 | . . . . . . . . . 10 ⊢ 𝑏 ∈ V | |
14 | 13 | elpw 4533 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ⊆ (𝑁‘𝑏)) |
15 | 13 | elpw 4533 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 𝐵 ↔ 𝑏 ⊆ 𝐵) |
16 | 12, 14, 15 | 3bitr4g 317 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) |
17 | eleq1 2827 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑁‘𝑏) ∈ 𝑆 ↔ 𝑈 ∈ 𝑆)) | |
18 | 17 | anbi2d 632 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆))) |
19 | pweq 4545 | . . . . . . . . . . 11 ⊢ ((𝑁‘𝑏) = 𝑈 → 𝒫 (𝑁‘𝑏) = 𝒫 𝑈) | |
20 | 19 | eleq2d 2825 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝑈)) |
21 | 20 | bibi1d 347 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
22 | 18, 21 | imbi12d 348 | . . . . . . . 8 ⊢ ((𝑁‘𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵)))) |
23 | 16, 22 | mpbii 236 | . . . . . . 7 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
24 | 23 | com12 32 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
25 | 24 | adantld 494 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
26 | 25 | pm5.32rd 581 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)))) |
27 | elin 3899 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) | |
28 | 27 | anbi1i 627 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
29 | anass 472 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | |
30 | 28, 29 | bitr2i 279 | . . . 4 ⊢ ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
31 | 26, 30 | bitrdi 290 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈))) |
32 | 31 | rexbidv2 3224 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
33 | 4, 32 | bitrd 282 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4529 ‘cfv 6400 (class class class)co 7234 Fincfn 8649 Basecbs 16792 ↾s cress 16816 LModclmod 19931 LSubSpclss 20000 LSpanclspn 20040 LFinGenclfig 40642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-sca 16850 df-vsca 16851 df-0g 16978 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-grp 18400 df-minusg 18401 df-sbg 18402 df-subg 18572 df-mgp 19537 df-ur 19549 df-ring 19596 df-lmod 19933 df-lss 20001 df-lsp 20041 df-lfig 40643 |
This theorem is referenced by: islssfgi 40647 lsmfgcl 40649 islnm2 40653 lmhmfgima 40659 |
Copyright terms: Public domain | W3C validator |