| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfg2 | Structured version Visualization version GIF version | ||
| Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| islssfg.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| islssfg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| islssfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islssfg2.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| islssfg2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssfg.x | . . 3 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | islssfg.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | islssfg.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islssfg 43027 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) |
| 5 | islssfg2.b | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | 5, 2 | lssss 20907 | . . . . . . . . . . . 12 ⊢ ((𝑁‘𝑏) ∈ 𝑆 → (𝑁‘𝑏) ⊆ 𝐵) |
| 7 | 6 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑁‘𝑏) ⊆ 𝐵) |
| 8 | sstr2 3972 | . . . . . . . . . . 11 ⊢ (𝑏 ⊆ (𝑁‘𝑏) → ((𝑁‘𝑏) ⊆ 𝐵 → 𝑏 ⊆ 𝐵)) | |
| 9 | 7, 8 | mpan9 506 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁‘𝑏)) → 𝑏 ⊆ 𝐵) |
| 10 | 5, 3 | lspssid 20956 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
| 11 | 10 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
| 12 | 9, 11 | impbida 800 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁‘𝑏) ↔ 𝑏 ⊆ 𝐵)) |
| 13 | vex 3468 | . . . . . . . . . 10 ⊢ 𝑏 ∈ V | |
| 14 | 13 | elpw 4586 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ⊆ (𝑁‘𝑏)) |
| 15 | 13 | elpw 4586 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 𝐵 ↔ 𝑏 ⊆ 𝐵) |
| 16 | 12, 14, 15 | 3bitr4g 314 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) |
| 17 | eleq1 2821 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑁‘𝑏) ∈ 𝑆 ↔ 𝑈 ∈ 𝑆)) | |
| 18 | 17 | anbi2d 630 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆))) |
| 19 | pweq 4596 | . . . . . . . . . . 11 ⊢ ((𝑁‘𝑏) = 𝑈 → 𝒫 (𝑁‘𝑏) = 𝒫 𝑈) | |
| 20 | 19 | eleq2d 2819 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝑈)) |
| 21 | 20 | bibi1d 343 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 22 | 18, 21 | imbi12d 344 | . . . . . . . 8 ⊢ ((𝑁‘𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵)))) |
| 23 | 16, 22 | mpbii 233 | . . . . . . 7 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 24 | 23 | com12 32 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 25 | 24 | adantld 490 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 26 | 25 | pm5.32rd 578 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)))) |
| 27 | elin 3949 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) | |
| 28 | 27 | anbi1i 624 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
| 29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | |
| 30 | 28, 29 | bitr2i 276 | . . . 4 ⊢ ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
| 31 | 26, 30 | bitrdi 287 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈))) |
| 32 | 31 | rexbidv2 3162 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
| 33 | 4, 32 | bitrd 279 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∩ cin 3932 ⊆ wss 3933 𝒫 cpw 4582 ‘cfv 6542 (class class class)co 7414 Fincfn 8968 Basecbs 17230 ↾s cress 17256 LModclmod 20831 LSubSpclss 20902 LSpanclspn 20942 LFinGenclfig 43024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-sca 17293 df-vsca 17294 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-mgp 20111 df-ur 20152 df-ring 20205 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lfig 43025 |
| This theorem is referenced by: islssfgi 43029 lsmfgcl 43031 islnm2 43035 lmhmfgima 43041 |
| Copyright terms: Public domain | W3C validator |