| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfg2 | Structured version Visualization version GIF version | ||
| Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| islssfg.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| islssfg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| islssfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islssfg2.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| islssfg2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssfg.x | . . 3 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | islssfg.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | islssfg.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islssfg 43059 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) |
| 5 | islssfg2.b | . . . . . . . . . . . . 13 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | 5, 2 | lssss 20842 | . . . . . . . . . . . 12 ⊢ ((𝑁‘𝑏) ∈ 𝑆 → (𝑁‘𝑏) ⊆ 𝐵) |
| 7 | 6 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑁‘𝑏) ⊆ 𝐵) |
| 8 | sstr2 3953 | . . . . . . . . . . 11 ⊢ (𝑏 ⊆ (𝑁‘𝑏) → ((𝑁‘𝑏) ⊆ 𝐵 → 𝑏 ⊆ 𝐵)) | |
| 9 | 7, 8 | mpan9 506 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁‘𝑏)) → 𝑏 ⊆ 𝐵) |
| 10 | 5, 3 | lspssid 20891 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
| 11 | 10 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ 𝐵) → 𝑏 ⊆ (𝑁‘𝑏)) |
| 12 | 9, 11 | impbida 800 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁‘𝑏) ↔ 𝑏 ⊆ 𝐵)) |
| 13 | vex 3451 | . . . . . . . . . 10 ⊢ 𝑏 ∈ V | |
| 14 | 13 | elpw 4567 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ⊆ (𝑁‘𝑏)) |
| 15 | 13 | elpw 4567 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝒫 𝐵 ↔ 𝑏 ⊆ 𝐵) |
| 16 | 12, 14, 15 | 3bitr4g 314 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) |
| 17 | eleq1 2816 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑁‘𝑏) ∈ 𝑆 ↔ 𝑈 ∈ 𝑆)) | |
| 18 | 17 | anbi2d 630 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆))) |
| 19 | pweq 4577 | . . . . . . . . . . 11 ⊢ ((𝑁‘𝑏) = 𝑈 → 𝒫 (𝑁‘𝑏) = 𝒫 𝑈) | |
| 20 | 19 | eleq2d 2814 | . . . . . . . . . 10 ⊢ ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝑈)) |
| 21 | 20 | bibi1d 343 | . . . . . . . . 9 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 22 | 18, 21 | imbi12d 344 | . . . . . . . 8 ⊢ ((𝑁‘𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁‘𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁‘𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵)))) |
| 23 | 16, 22 | mpbii 233 | . . . . . . 7 ⊢ ((𝑁‘𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 24 | 23 | com12 32 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑁‘𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 25 | 24 | adantld 490 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵))) |
| 26 | 25 | pm5.32rd 578 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)))) |
| 27 | elin 3930 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) | |
| 28 | 27 | anbi1i 624 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
| 29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) | |
| 30 | 28, 29 | bitr2i 276 | . . . 4 ⊢ ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈)) |
| 31 | 26, 30 | bitrdi 287 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁‘𝑏) = 𝑈))) |
| 32 | 31 | rexbidv2 3153 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
| 33 | 4, 32 | bitrd 279 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁‘𝑏) = 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 Basecbs 17179 ↾s cress 17200 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 LFinGenclfig 43056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-sca 17236 df-vsca 17237 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lfig 43057 |
| This theorem is referenced by: islssfgi 43061 lsmfgcl 43063 islnm2 43067 lmhmfgima 43073 |
| Copyright terms: Public domain | W3C validator |