Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg2 Structured version   Visualization version   GIF version

Theorem islssfg2 39661
 Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
islssfg2.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islssfg2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem islssfg2
StepHypRef Expression
1 islssfg.x . . 3 𝑋 = (𝑊s 𝑈)
2 islssfg.s . . 3 𝑆 = (LSubSp‘𝑊)
3 islssfg.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3islssfg 39660 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
5 islssfg2.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑊)
65, 2lssss 19700 . . . . . . . . . . . 12 ((𝑁𝑏) ∈ 𝑆 → (𝑁𝑏) ⊆ 𝐵)
76adantl 484 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑁𝑏) ⊆ 𝐵)
8 sstr2 3972 . . . . . . . . . . 11 (𝑏 ⊆ (𝑁𝑏) → ((𝑁𝑏) ⊆ 𝐵𝑏𝐵))
97, 8mpan9 509 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁𝑏)) → 𝑏𝐵)
105, 3lspssid 19749 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
1110adantlr 713 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
129, 11impbida 799 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁𝑏) ↔ 𝑏𝐵))
13 vex 3496 . . . . . . . . . 10 𝑏 ∈ V
1413elpw 4544 . . . . . . . . 9 (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ⊆ (𝑁𝑏))
1513elpw 4544 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
1612, 14, 153bitr4g 316 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵))
17 eleq1 2898 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → ((𝑁𝑏) ∈ 𝑆𝑈𝑆))
1817anbi2d 630 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈𝑆)))
19 pweq 4540 . . . . . . . . . . 11 ((𝑁𝑏) = 𝑈 → 𝒫 (𝑁𝑏) = 𝒫 𝑈)
2019eleq2d 2896 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝑈))
2120bibi1d 346 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2218, 21imbi12d 347 . . . . . . . 8 ((𝑁𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵))))
2316, 22mpbii 235 . . . . . . 7 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2423com12 32 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2524adantld 493 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2625pm5.32rd 580 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈))))
27 elin 4167 . . . . . 6 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2827anbi1i 625 . . . . 5 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈))
29 anass 471 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
3028, 29bitr2i 278 . . . 4 ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈))
3126, 30syl6bb 289 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈)))
3231rexbidv2 3293 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
334, 32bitrd 281 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1531   ∈ wcel 2108  ∃wrex 3137   ∩ cin 3933   ⊆ wss 3934  𝒫 cpw 4537  ‘cfv 6348  (class class class)co 7148  Fincfn 8501  Basecbs 16475   ↾s cress 16476  LModclmod 19626  LSubSpclss 19695  LSpanclspn 19735  LFinGenclfig 39657 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-mgp 19232  df-ur 19244  df-ring 19291  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lfig 39658 This theorem is referenced by:  islssfgi  39662  lsmfgcl  39664  islnm2  39668  lmhmfgima  39674
 Copyright terms: Public domain W3C validator