Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubeldm2d Structured version   Visualization version   GIF version

Theorem lubeldm2d 47678
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2d.b (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
lubeldm2d.l (πœ‘ β†’ ≀ = (leβ€˜πΎ))
lubeldm2d.u (πœ‘ β†’ π‘ˆ = (lubβ€˜πΎ))
lubeldm2d.p ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (πœ“ ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))))
lubeldm2d.k (πœ‘ β†’ 𝐾 ∈ Poset)
Assertion
Ref Expression
lubeldm2d (πœ‘ β†’ (𝑆 ∈ dom π‘ˆ ↔ (𝑆 βŠ† 𝐡 ∧ βˆƒπ‘₯ ∈ 𝐡 πœ“)))
Distinct variable groups:   π‘₯,𝐾,𝑦,𝑧   π‘₯,𝑆,𝑦,𝑧   πœ‘,π‘₯,𝑦,𝑧
Allowed substitution hints:   πœ“(π‘₯,𝑦,𝑧)   𝐡(π‘₯,𝑦,𝑧)   π‘ˆ(π‘₯,𝑦,𝑧)   ≀ (π‘₯,𝑦,𝑧)

Proof of Theorem lubeldm2d
StepHypRef Expression
1 eqid 2730 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2730 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
3 eqid 2730 . . 3 (lubβ€˜πΎ) = (lubβ€˜πΎ)
4 biid 260 . . 3 ((βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
5 lubeldm2d.k . . 3 (πœ‘ β†’ 𝐾 ∈ Poset)
61, 2, 3, 4, 5lubeldm2 47676 . 2 (πœ‘ β†’ (𝑆 ∈ dom (lubβ€˜πΎ) ↔ (𝑆 βŠ† (Baseβ€˜πΎ) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))))
7 lubeldm2d.u . . . 4 (πœ‘ β†’ π‘ˆ = (lubβ€˜πΎ))
87dmeqd 5904 . . 3 (πœ‘ β†’ dom π‘ˆ = dom (lubβ€˜πΎ))
98eleq2d 2817 . 2 (πœ‘ β†’ (𝑆 ∈ dom π‘ˆ ↔ 𝑆 ∈ dom (lubβ€˜πΎ)))
10 lubeldm2d.b . . . 4 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
1110sseq2d 4013 . . 3 (πœ‘ β†’ (𝑆 βŠ† 𝐡 ↔ 𝑆 βŠ† (Baseβ€˜πΎ)))
12 lubeldm2d.p . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (πœ“ ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧))))
13 lubeldm2d.l . . . . . . . . . . 11 (πœ‘ β†’ ≀ = (leβ€˜πΎ))
1413breqd 5158 . . . . . . . . . 10 (πœ‘ β†’ (𝑦 ≀ π‘₯ ↔ 𝑦(leβ€˜πΎ)π‘₯))
1514ralbidv 3175 . . . . . . . . 9 (πœ‘ β†’ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ↔ βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯))
1613breqd 5158 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑦 ≀ 𝑧 ↔ 𝑦(leβ€˜πΎ)𝑧))
1716ralbidv 3175 . . . . . . . . . . 11 (πœ‘ β†’ (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 ↔ βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧))
1813breqd 5158 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ≀ 𝑧 ↔ π‘₯(leβ€˜πΎ)𝑧))
1917, 18imbi12d 343 . . . . . . . . . 10 (πœ‘ β†’ ((βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
2010, 19raleqbidv 3340 . . . . . . . . 9 (πœ‘ β†’ (βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧) ↔ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
2115, 20anbi12d 629 . . . . . . . 8 (πœ‘ β†’ ((βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))))
2221adantr 479 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ π‘₯ ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ 𝑆 𝑦 ≀ 𝑧 β†’ π‘₯ ≀ 𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))))
2312, 22bitrd 278 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (πœ“ ↔ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))))
2423pm5.32da 577 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ 𝐡 ∧ πœ“) ↔ (π‘₯ ∈ 𝐡 ∧ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))))
2510eleq2d 2817 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↔ π‘₯ ∈ (Baseβ€˜πΎ)))
2625anbi1d 628 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ 𝐡 ∧ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))) ↔ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))))
2724, 26bitrd 278 . . . 4 (πœ‘ β†’ ((π‘₯ ∈ 𝐡 ∧ πœ“) ↔ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ (βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))))
2827rexbidv2 3172 . . 3 (πœ‘ β†’ (βˆƒπ‘₯ ∈ 𝐡 πœ“ ↔ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))))
2911, 28anbi12d 629 . 2 (πœ‘ β†’ ((𝑆 βŠ† 𝐡 ∧ βˆƒπ‘₯ ∈ 𝐡 πœ“) ↔ (𝑆 βŠ† (Baseβ€˜πΎ) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑆 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))))
306, 9, 293bitr4d 310 1 (πœ‘ β†’ (𝑆 ∈ dom π‘ˆ ↔ (𝑆 βŠ† 𝐡 ∧ βˆƒπ‘₯ ∈ 𝐡 πœ“)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068   βŠ† wss 3947   class class class wbr 5147  dom cdm 5675  β€˜cfv 6542  Basecbs 17148  lecple 17208  Posetcpo 18264  lubclub 18266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-proset 18252  df-poset 18270  df-lub 18303
This theorem is referenced by:  ipolubdm  47699
  Copyright terms: Public domain W3C validator