Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubeldm2d Structured version   Visualization version   GIF version

Theorem lubeldm2d 48803
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2d.b (𝜑𝐵 = (Base‘𝐾))
lubeldm2d.l (𝜑 = (le‘𝐾))
lubeldm2d.u (𝜑𝑈 = (lub‘𝐾))
lubeldm2d.p ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
lubeldm2d.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
lubeldm2d (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)

Proof of Theorem lubeldm2d
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2734 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2734 . . 3 (lub‘𝐾) = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 lubeldm2d.k . . 3 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5lubeldm2 48801 . 2 (𝜑 → (𝑆 ∈ dom (lub‘𝐾) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
7 lubeldm2d.u . . . 4 (𝜑𝑈 = (lub‘𝐾))
87dmeqd 5898 . . 3 (𝜑 → dom 𝑈 = dom (lub‘𝐾))
98eleq2d 2819 . 2 (𝜑 → (𝑆 ∈ dom 𝑈𝑆 ∈ dom (lub‘𝐾)))
10 lubeldm2d.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
1110sseq2d 3998 . . 3 (𝜑 → (𝑆𝐵𝑆 ⊆ (Base‘𝐾)))
12 lubeldm2d.p . . . . . . 7 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
13 lubeldm2d.l . . . . . . . . . . 11 (𝜑 = (le‘𝐾))
1413breqd 5136 . . . . . . . . . 10 (𝜑 → (𝑦 𝑥𝑦(le‘𝐾)𝑥))
1514ralbidv 3165 . . . . . . . . 9 (𝜑 → (∀𝑦𝑆 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦(le‘𝐾)𝑥))
1613breqd 5136 . . . . . . . . . . . 12 (𝜑 → (𝑦 𝑧𝑦(le‘𝐾)𝑧))
1716ralbidv 3165 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑆 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦(le‘𝐾)𝑧))
1813breqd 5136 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑧𝑥(le‘𝐾)𝑧))
1917, 18imbi12d 344 . . . . . . . . . 10 (𝜑 → ((∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2010, 19raleqbidv 3330 . . . . . . . . 9 (𝜑 → (∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2115, 20anbi12d 632 . . . . . . . 8 (𝜑 → ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2221adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2312, 22bitrd 279 . . . . . 6 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2423pm5.32da 579 . . . . 5 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥𝐵 ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2510eleq2d 2819 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
2625anbi1d 631 . . . . 5 (𝜑 → ((𝑥𝐵 ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2724, 26bitrd 279 . . . 4 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2827rexbidv2 3162 . . 3 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2911, 28anbi12d 632 . 2 (𝜑 → ((𝑆𝐵 ∧ ∃𝑥𝐵 𝜓) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
306, 9, 293bitr4d 311 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3933   class class class wbr 5125  dom cdm 5667  cfv 6542  Basecbs 17230  lecple 17284  Posetcpo 18328  lubclub 18330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-proset 18315  df-poset 18334  df-lub 18365
This theorem is referenced by:  ipolubdm  48832
  Copyright terms: Public domain W3C validator