Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubeldm2d Structured version   Visualization version   GIF version

Theorem lubeldm2d 48919
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2d.b (𝜑𝐵 = (Base‘𝐾))
lubeldm2d.l (𝜑 = (le‘𝐾))
lubeldm2d.u (𝜑𝑈 = (lub‘𝐾))
lubeldm2d.p ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
lubeldm2d.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
lubeldm2d (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)

Proof of Theorem lubeldm2d
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2729 . . 3 (lub‘𝐾) = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 lubeldm2d.k . . 3 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5lubeldm2 48917 . 2 (𝜑 → (𝑆 ∈ dom (lub‘𝐾) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
7 lubeldm2d.u . . . 4 (𝜑𝑈 = (lub‘𝐾))
87dmeqd 5859 . . 3 (𝜑 → dom 𝑈 = dom (lub‘𝐾))
98eleq2d 2814 . 2 (𝜑 → (𝑆 ∈ dom 𝑈𝑆 ∈ dom (lub‘𝐾)))
10 lubeldm2d.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
1110sseq2d 3976 . . 3 (𝜑 → (𝑆𝐵𝑆 ⊆ (Base‘𝐾)))
12 lubeldm2d.p . . . . . . 7 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
13 lubeldm2d.l . . . . . . . . . . 11 (𝜑 = (le‘𝐾))
1413breqd 5113 . . . . . . . . . 10 (𝜑 → (𝑦 𝑥𝑦(le‘𝐾)𝑥))
1514ralbidv 3156 . . . . . . . . 9 (𝜑 → (∀𝑦𝑆 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦(le‘𝐾)𝑥))
1613breqd 5113 . . . . . . . . . . . 12 (𝜑 → (𝑦 𝑧𝑦(le‘𝐾)𝑧))
1716ralbidv 3156 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑆 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦(le‘𝐾)𝑧))
1813breqd 5113 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑧𝑥(le‘𝐾)𝑧))
1917, 18imbi12d 344 . . . . . . . . . 10 (𝜑 → ((∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2010, 19raleqbidv 3316 . . . . . . . . 9 (𝜑 → (∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2115, 20anbi12d 632 . . . . . . . 8 (𝜑 → ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2221adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2312, 22bitrd 279 . . . . . 6 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2423pm5.32da 579 . . . . 5 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥𝐵 ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2510eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
2625anbi1d 631 . . . . 5 (𝜑 → ((𝑥𝐵 ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2724, 26bitrd 279 . . . 4 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2827rexbidv2 3153 . . 3 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2911, 28anbi12d 632 . 2 (𝜑 → ((𝑆𝐵 ∧ ∃𝑥𝐵 𝜓) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
306, 9, 293bitr4d 311 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  dom cdm 5631  cfv 6499  Basecbs 17155  lecple 17203  Posetcpo 18244  lubclub 18246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-proset 18231  df-poset 18250  df-lub 18281
This theorem is referenced by:  ipolubdm  48948
  Copyright terms: Public domain W3C validator