Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubeldm2d Structured version   Visualization version   GIF version

Theorem lubeldm2d 48946
Description: Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
lubeldm2d.b (𝜑𝐵 = (Base‘𝐾))
lubeldm2d.l (𝜑 = (le‘𝐾))
lubeldm2d.u (𝜑𝑈 = (lub‘𝐾))
lubeldm2d.p ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
lubeldm2d.k (𝜑𝐾 ∈ Poset)
Assertion
Ref Expression
lubeldm2d (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)

Proof of Theorem lubeldm2d
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2729 . . 3 (lub‘𝐾) = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 lubeldm2d.k . . 3 (𝜑𝐾 ∈ Poset)
61, 2, 3, 4, 5lubeldm2 48944 . 2 (𝜑 → (𝑆 ∈ dom (lub‘𝐾) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
7 lubeldm2d.u . . . 4 (𝜑𝑈 = (lub‘𝐾))
87dmeqd 5869 . . 3 (𝜑 → dom 𝑈 = dom (lub‘𝐾))
98eleq2d 2814 . 2 (𝜑 → (𝑆 ∈ dom 𝑈𝑆 ∈ dom (lub‘𝐾)))
10 lubeldm2d.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
1110sseq2d 3979 . . 3 (𝜑 → (𝑆𝐵𝑆 ⊆ (Base‘𝐾)))
12 lubeldm2d.p . . . . . . 7 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
13 lubeldm2d.l . . . . . . . . . . 11 (𝜑 = (le‘𝐾))
1413breqd 5118 . . . . . . . . . 10 (𝜑 → (𝑦 𝑥𝑦(le‘𝐾)𝑥))
1514ralbidv 3156 . . . . . . . . 9 (𝜑 → (∀𝑦𝑆 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦(le‘𝐾)𝑥))
1613breqd 5118 . . . . . . . . . . . 12 (𝜑 → (𝑦 𝑧𝑦(le‘𝐾)𝑧))
1716ralbidv 3156 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑆 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦(le‘𝐾)𝑧))
1813breqd 5118 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑧𝑥(le‘𝐾)𝑧))
1917, 18imbi12d 344 . . . . . . . . . 10 (𝜑 → ((∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2010, 19raleqbidv 3319 . . . . . . . . 9 (𝜑 → (∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2115, 20anbi12d 632 . . . . . . . 8 (𝜑 → ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2221adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → ((∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2312, 22bitrd 279 . . . . . 6 ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2423pm5.32da 579 . . . . 5 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥𝐵 ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2510eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
2625anbi1d 631 . . . . 5 (𝜑 → ((𝑥𝐵 ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2724, 26bitrd 279 . . . 4 (𝜑 → ((𝑥𝐵𝜓) ↔ (𝑥 ∈ (Base‘𝐾) ∧ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
2827rexbidv2 3153 . . 3 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2911, 28anbi12d 632 . 2 (𝜑 → ((𝑆𝐵 ∧ ∃𝑥𝐵 𝜓) ↔ (𝑆 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
306, 9, 293bitr4d 311 1 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  dom cdm 5638  cfv 6511  Basecbs 17179  lecple 17227  Posetcpo 18268  lubclub 18270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-proset 18255  df-poset 18274  df-lub 18305
This theorem is referenced by:  ipolubdm  48975
  Copyright terms: Public domain W3C validator