| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsupp | Structured version Visualization version GIF version | ||
| Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.) |
| Ref | Expression |
|---|---|
| rexsupp | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuppfn 8106 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
| 3 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
| 4 | 2, 3 | bitrdi 287 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
| 5 | 4 | rexbidv2 3153 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 supp csupp 8096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-supp 8097 |
| This theorem is referenced by: mdegldg 25999 |
| Copyright terms: Public domain | W3C validator |