![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsupp | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.) |
Ref | Expression |
---|---|
rexsupp | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuppfn 8181 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
3 | anass 467 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
4 | 2, 3 | bitrdi 286 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
5 | 4 | rexbidv2 3172 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 Fn wfn 6548 ‘cfv 6553 (class class class)co 7426 supp csupp 8171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-supp 8172 |
This theorem is referenced by: mdegldg 26022 |
Copyright terms: Public domain | W3C validator |