![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsupp | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.) |
Ref | Expression |
---|---|
rexsupp | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuppfn 8153 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
3 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
4 | 2, 3 | bitrdi 287 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
5 | 4 | rexbidv2 3168 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2934 ∃wrex 3064 Fn wfn 6531 ‘cfv 6536 (class class class)co 7404 supp csupp 8143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-supp 8144 |
This theorem is referenced by: mdegldg 25953 |
Copyright terms: Public domain | W3C validator |