MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsupp Structured version   Visualization version   GIF version

Theorem rexsupp 7550
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.)
Assertion
Ref Expression
rexsupp ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥𝑋 ((𝐹𝑥) ≠ 𝑍𝜑)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋   𝑥,𝑍
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsupp
StepHypRef Expression
1 elsuppfn 7540 . . . 4 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍)))
21anbi1d 624 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ ((𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑)))
3 anass 461 . . 3 (((𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥𝑋 ∧ ((𝐹𝑥) ≠ 𝑍𝜑)))
42, 3syl6bb 279 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ (𝑥𝑋 ∧ ((𝐹𝑥) ≠ 𝑍𝜑))))
54rexbidv2 3229 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥𝑋 ((𝐹𝑥) ≠ 𝑍𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108  wcel 2157  wne 2971  wrex 3090   Fn wfn 6096  cfv 6101  (class class class)co 6878   supp csupp 7532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-supp 7533
This theorem is referenced by:  mdegldg  24167
  Copyright terms: Public domain W3C validator