![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsupp | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.) |
Ref | Expression |
---|---|
rexsupp | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuppfn 7540 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
2 | 1 | anbi1d 624 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
3 | anass 461 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
4 | 2, 3 | syl6bb 279 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝑋 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
5 | 4 | rexbidv2 3229 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ≠ wne 2971 ∃wrex 3090 Fn wfn 6096 ‘cfv 6101 (class class class)co 6878 supp csupp 7532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-supp 7533 |
This theorem is referenced by: mdegldg 24167 |
Copyright terms: Public domain | W3C validator |