MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsupp Structured version   Visualization version   GIF version

Theorem rexsupp 8118
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.)
Assertion
Ref Expression
rexsupp ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥𝑋 ((𝐹𝑥) ≠ 𝑍𝜑)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋   𝑥,𝑍
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsupp
StepHypRef Expression
1 elsuppfn 8106 . . . 4 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍)))
21anbi1d 631 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ ((𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑)))
3 anass 468 . . 3 (((𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥𝑋 ∧ ((𝐹𝑥) ≠ 𝑍𝜑)))
42, 3bitrdi 287 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ (𝑥𝑋 ∧ ((𝐹𝑥) ≠ 𝑍𝜑))))
54rexbidv2 3153 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥𝑋 ((𝐹𝑥) ≠ 𝑍𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  wne 2929  wrex 3057   Fn wfn 6481  cfv 6486  (class class class)co 7352   supp csupp 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-supp 8097
This theorem is referenced by:  mdegldg  25999
  Copyright terms: Public domain W3C validator