MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsupp Structured version   Visualization version   GIF version

Theorem rexsupp 8181
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.)
Assertion
Ref Expression
rexsupp ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥𝑋 ((𝐹𝑥) ≠ 𝑍𝜑)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋   𝑥,𝑍
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsupp
StepHypRef Expression
1 elsuppfn 8169 . . . 4 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍)))
21anbi1d 631 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ ((𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑)))
3 anass 468 . . 3 (((𝑥𝑋 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥𝑋 ∧ ((𝐹𝑥) ≠ 𝑍𝜑)))
42, 3bitrdi 287 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ 𝜑) ↔ (𝑥𝑋 ∧ ((𝐹𝑥) ≠ 𝑍𝜑))))
54rexbidv2 3160 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥𝑋 ((𝐹𝑥) ≠ 𝑍𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wne 2932  wrex 3060   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-supp 8160
This theorem is referenced by:  mdegldg  26023
  Copyright terms: Public domain W3C validator