Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressupprn Structured version   Visualization version   GIF version

Theorem ressupprn 32702
Description: The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
ressupprn ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))

Proof of Theorem ressupprn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 6608 . . . . . . . . 9 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 216 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
323ad2ant1 1133 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → 𝐹 Fn dom 𝐹)
4 dmexg 7941 . . . . . . . 8 (𝐹𝑉 → dom 𝐹 ∈ V)
543ad2ant2 1134 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → dom 𝐹 ∈ V)
6 simp3 1138 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → 0𝑊)
7 elsuppfn 8211 . . . . . . 7 ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ V ∧ 0𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 )))
83, 5, 6, 7syl3anc 1371 . . . . . 6 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 )))
98anbi1d 630 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)))
10 anass 468 . . . . . 6 (((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)))
1110a1i 11 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → (((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))))
128biimprd 248 . . . . . . . . . . 11 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 )))
1312impl 455 . . . . . . . . . 10 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 ))
1413fvresd 6940 . . . . . . . . 9 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥))
1514eqeq1d 2742 . . . . . . . 8 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝑦))
1615pm5.32da 578 . . . . . . 7 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦)))
17 ancom 460 . . . . . . . 8 (((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦 ∧ (𝐹𝑥) ≠ 0 ))
18 simpr 484 . . . . . . . . . 10 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
1918neeq1d 3006 . . . . . . . . 9 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝑥) ≠ 0𝑦0 ))
2019pm5.32da 578 . . . . . . . 8 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) = 𝑦 ∧ (𝐹𝑥) ≠ 0 ) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2117, 20bitrid 283 . . . . . . 7 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2216, 21bitrd 279 . . . . . 6 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2322pm5.32da 578 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) = 𝑦𝑦0 ))))
249, 11, 233bitrd 305 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) = 𝑦𝑦0 ))))
2524rexbidv2 3181 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
26 suppssdm 8218 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
27 fnssres 6703 . . . . 5 ((𝐹 Fn dom 𝐹 ∧ (𝐹 supp 0 ) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ))
283, 26, 27sylancl 585 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ))
29 fvelrnb 6982 . . . 4 ((𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))
3028, 29syl 17 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))
31 fvelrnb 6982 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
3231anbi1d 630 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ ran 𝐹𝑦0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦𝑦0 )))
33 eldifsn 4811 . . . . 5 (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑦 ∈ ran 𝐹𝑦0 ))
34 r19.41v 3195 . . . . 5 (∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦𝑦0 ))
3532, 33, 343bitr4g 314 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
363, 35syl 17 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
3725, 30, 363bitr4d 311 . 2 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑦 ∈ (ran 𝐹 ∖ { 0 })))
3837eqrdv 2738 1 ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  {csn 4648  dom cdm 5700  ran crn 5701  cres 5702  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  fsupprnfi  32704
  Copyright terms: Public domain W3C validator