Step | Hyp | Ref
| Expression |
1 | | funfn 6464 |
. . . . . . . . 9
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
2 | 1 | biimpi 215 |
. . . . . . . 8
⊢ (Fun
𝐹 → 𝐹 Fn dom 𝐹) |
3 | 2 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
4 | | dmexg 7750 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) |
5 | 4 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → dom 𝐹 ∈ V) |
6 | | simp3 1137 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → 0 ∈ 𝑊) |
7 | | elsuppfn 7987 |
. . . . . . 7
⊢ ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ V ∧ 0 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 0 ))) |
8 | 3, 5, 6, 7 | syl3anc 1370 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 0 ))) |
9 | 8 | anbi1d 630 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))) |
10 | | anass 469 |
. . . . . 6
⊢ (((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))) |
11 | 10 | a1i 11 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)))) |
12 | 8 | biimprd 247 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 ))) |
13 | 12 | impl 456 |
. . . . . . . . . 10
⊢ ((((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹‘𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 )) |
14 | 13 | fvresd 6794 |
. . . . . . . . 9
⊢ ((((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹‘𝑥) ≠ 0 ) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹‘𝑥)) |
15 | 14 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹‘𝑥) ≠ 0 ) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ (𝐹‘𝑥) = 𝑦)) |
16 | 15 | pm5.32da 579 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹‘𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹‘𝑥) ≠ 0 ∧ (𝐹‘𝑥) = 𝑦))) |
17 | | ancom 461 |
. . . . . . . 8
⊢ (((𝐹‘𝑥) ≠ 0 ∧ (𝐹‘𝑥) = 𝑦) ↔ ((𝐹‘𝑥) = 𝑦 ∧ (𝐹‘𝑥) ≠ 0 )) |
18 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) = 𝑦) |
19 | 18 | neeq1d 3003 |
. . . . . . . . 9
⊢ ((((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹‘𝑥) = 𝑦) → ((𝐹‘𝑥) ≠ 0 ↔ 𝑦 ≠ 0 )) |
20 | 19 | pm5.32da 579 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹‘𝑥) = 𝑦 ∧ (𝐹‘𝑥) ≠ 0 ) ↔ ((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ))) |
21 | 17, 20 | syl5bb 283 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹‘𝑥) ≠ 0 ∧ (𝐹‘𝑥) = 𝑦) ↔ ((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ))) |
22 | 16, 21 | bitrd 278 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹‘𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ))) |
23 | 22 | pm5.32da 579 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 )))) |
24 | 9, 11, 23 | 3bitrd 305 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 )))) |
25 | 24 | rexbidv2 3224 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ))) |
26 | | suppssdm 7993 |
. . . . 5
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 |
27 | | fnssres 6555 |
. . . . 5
⊢ ((𝐹 Fn dom 𝐹 ∧ (𝐹 supp 0 ) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 )) |
28 | 3, 26, 27 | sylancl 586 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 )) |
29 | | fvelrnb 6830 |
. . . 4
⊢ ((𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)) |
30 | 28, 29 | syl 17 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)) |
31 | | fvelrnb 6830 |
. . . . . 6
⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑦)) |
32 | 31 | anbi1d 630 |
. . . . 5
⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ ran 𝐹 ∧ 𝑦 ≠ 0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ))) |
33 | | eldifsn 4720 |
. . . . 5
⊢ (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑦 ∈ ran 𝐹 ∧ 𝑦 ≠ 0 )) |
34 | | r19.41v 3276 |
. . . . 5
⊢
(∃𝑥 ∈ dom
𝐹((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 )) |
35 | 32, 33, 34 | 3bitr4g 314 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ))) |
36 | 3, 35 | syl 17 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹‘𝑥) = 𝑦 ∧ 𝑦 ≠ 0 ))) |
37 | 25, 30, 36 | 3bitr4d 311 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑦 ∈ (ran 𝐹 ∖ { 0 }))) |
38 | 37 | eqrdv 2736 |
1
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 })) |