Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressupprn Structured version   Visualization version   GIF version

Theorem ressupprn 30926
Description: The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
ressupprn ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))

Proof of Theorem ressupprn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 6448 . . . . . . . . 9 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 215 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
323ad2ant1 1131 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → 𝐹 Fn dom 𝐹)
4 dmexg 7724 . . . . . . . 8 (𝐹𝑉 → dom 𝐹 ∈ V)
543ad2ant2 1132 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → dom 𝐹 ∈ V)
6 simp3 1136 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → 0𝑊)
7 elsuppfn 7958 . . . . . . 7 ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ V ∧ 0𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 )))
83, 5, 6, 7syl3anc 1369 . . . . . 6 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 )))
98anbi1d 629 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)))
10 anass 468 . . . . . 6 (((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)))
1110a1i 11 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → (((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))))
128biimprd 247 . . . . . . . . . . 11 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 )))
1312impl 455 . . . . . . . . . 10 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 ))
1413fvresd 6776 . . . . . . . . 9 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥))
1514eqeq1d 2740 . . . . . . . 8 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝑦))
1615pm5.32da 578 . . . . . . 7 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦)))
17 ancom 460 . . . . . . . 8 (((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦 ∧ (𝐹𝑥) ≠ 0 ))
18 simpr 484 . . . . . . . . . 10 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
1918neeq1d 3002 . . . . . . . . 9 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝑥) ≠ 0𝑦0 ))
2019pm5.32da 578 . . . . . . . 8 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) = 𝑦 ∧ (𝐹𝑥) ≠ 0 ) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2117, 20syl5bb 282 . . . . . . 7 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2216, 21bitrd 278 . . . . . 6 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2322pm5.32da 578 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) = 𝑦𝑦0 ))))
249, 11, 233bitrd 304 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) = 𝑦𝑦0 ))))
2524rexbidv2 3223 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
26 suppssdm 7964 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
27 fnssres 6539 . . . . 5 ((𝐹 Fn dom 𝐹 ∧ (𝐹 supp 0 ) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ))
283, 26, 27sylancl 585 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ))
29 fvelrnb 6812 . . . 4 ((𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))
3028, 29syl 17 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))
31 fvelrnb 6812 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
3231anbi1d 629 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ ran 𝐹𝑦0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦𝑦0 )))
33 eldifsn 4717 . . . . 5 (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑦 ∈ ran 𝐹𝑦0 ))
34 r19.41v 3273 . . . . 5 (∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦𝑦0 ))
3532, 33, 343bitr4g 313 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
363, 35syl 17 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
3725, 30, 363bitr4d 310 . 2 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑦 ∈ (ran 𝐹 ∖ { 0 })))
3837eqrdv 2736 1 ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  {csn 4558  dom cdm 5580  ran crn 5581  cres 5582  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255   supp csupp 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-supp 7949
This theorem is referenced by:  fsupprnfi  30928
  Copyright terms: Public domain W3C validator