Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressupprn Structured version   Visualization version   GIF version

Theorem ressupprn 32602
Description: The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
ressupprn ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))

Proof of Theorem ressupprn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfn 6589 . . . . . . . . 9 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 215 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
323ad2ant1 1130 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → 𝐹 Fn dom 𝐹)
4 dmexg 7914 . . . . . . . 8 (𝐹𝑉 → dom 𝐹 ∈ V)
543ad2ant2 1131 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → dom 𝐹 ∈ V)
6 simp3 1135 . . . . . . 7 ((Fun 𝐹𝐹𝑉0𝑊) → 0𝑊)
7 elsuppfn 8184 . . . . . . 7 ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ V ∧ 0𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 )))
83, 5, 6, 7syl3anc 1368 . . . . . 6 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑥 ∈ (𝐹 supp 0 ) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 )))
98anbi1d 629 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)))
10 anass 467 . . . . . 6 (((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)))
1110a1i 11 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → (((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))))
128biimprd 247 . . . . . . . . . . 11 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 )))
1312impl 454 . . . . . . . . . 10 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → 𝑥 ∈ (𝐹 supp 0 ))
1413fvresd 6921 . . . . . . . . 9 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥))
1514eqeq1d 2728 . . . . . . . 8 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) ≠ 0 ) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝑦))
1615pm5.32da 577 . . . . . . 7 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦)))
17 ancom 459 . . . . . . . 8 (((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦 ∧ (𝐹𝑥) ≠ 0 ))
18 simpr 483 . . . . . . . . . 10 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) = 𝑦)
1918neeq1d 2990 . . . . . . . . 9 ((((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝑥) ≠ 0𝑦0 ))
2019pm5.32da 577 . . . . . . . 8 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) = 𝑦 ∧ (𝐹𝑥) ≠ 0 ) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2117, 20bitrid 282 . . . . . . 7 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ (𝐹𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2216, 21bitrd 278 . . . . . 6 (((Fun 𝐹𝐹𝑉0𝑊) ∧ 𝑥 ∈ dom 𝐹) → (((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ ((𝐹𝑥) = 𝑦𝑦0 )))
2322pm5.32da 577 . . . . 5 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ≠ 0 ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) = 𝑦𝑦0 ))))
249, 11, 233bitrd 304 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → ((𝑥 ∈ (𝐹 supp 0 ) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) = 𝑦𝑦0 ))))
2524rexbidv2 3165 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
26 suppssdm 8191 . . . . 5 (𝐹 supp 0 ) ⊆ dom 𝐹
27 fnssres 6684 . . . . 5 ((𝐹 Fn dom 𝐹 ∧ (𝐹 supp 0 ) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ))
283, 26, 27sylancl 584 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → (𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ))
29 fvelrnb 6963 . . . 4 ((𝐹 ↾ (𝐹 supp 0 )) Fn (𝐹 supp 0 ) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))
3028, 29syl 17 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = 𝑦))
31 fvelrnb 6963 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
3231anbi1d 629 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑦 ∈ ran 𝐹𝑦0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦𝑦0 )))
33 eldifsn 4795 . . . . 5 (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ (𝑦 ∈ ran 𝐹𝑦0 ))
34 r19.41v 3179 . . . . 5 (∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 ) ↔ (∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦𝑦0 ))
3532, 33, 343bitr4g 313 . . . 4 (𝐹 Fn dom 𝐹 → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
363, 35syl 17 . . 3 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ (ran 𝐹 ∖ { 0 }) ↔ ∃𝑥 ∈ dom 𝐹((𝐹𝑥) = 𝑦𝑦0 )))
3725, 30, 363bitr4d 310 . 2 ((Fun 𝐹𝐹𝑉0𝑊) → (𝑦 ∈ ran (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑦 ∈ (ran 𝐹 ∖ { 0 })))
3837eqrdv 2724 1 ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  Vcvv 3462  cdif 3944  wss 3947  {csn 4633  dom cdm 5682  ran crn 5683  cres 5684  Fun wfun 6548   Fn wfn 6549  cfv 6554  (class class class)co 7424   supp csupp 8174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-supp 8175
This theorem is referenced by:  fsupprnfi  32604
  Copyright terms: Public domain W3C validator